[1] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? the KITTI vision benchmark suite[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2012:3354-3361. [2] WU Z, SONG S, KHOSLA A, et al. 3D ShapeNets:a deep representation for volumetric shapes[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:1912-1920. [3] SONG S, XIAO J. Sliding shapes for 3D object detection in depth images[C]//Proceedings of the 13th European Conference on Computer Vision, LNCS 8694. Cham:Springer, 2014:634-651 [4] MATURANA D, SCHERER S. VoxNet:a 3D convolutional neural network for real-time object recognition[C]//Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE, 2015:922-928. [5] SONG S, XIAO J. Deep sliding shapes for amodal 3D object detection in RGB-D images[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:808-816. [6] ZHOU Y, TUZEL O. VoxelNet:end-to-end learning for point cloud based 3D object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:4490-4499. [7] 曾钰廷. 基于深度学习的物体检测与跟踪方法的研究[D]. 南昌:东华理工大学, 2018:59-65. (ZENG Y T. Object detection and tracking based on the deep learning[D]. Nanchang:East Chian University of Technology, 2018:59-65.) [8] YAN Y, MAO Y, LI B. SECOND:sparsely embedded convolutional detection[J]. Sensors, 2018, 18(10):3337. [9] UY M A, LEE G H. PointNetVLAD:deep point cloud based retrieval for large-scale place recognition[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:4470-4479. [10] DENG H, BIRDAL T, ILIC S. PPFNet:global context aware local features for robust 3D point matching[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:195-205. [11] QI C R, SU H, MO K, et al. PointNet:deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the 2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:77-85. [12] 王胜文,张彬,孙菁聪. PointNet的点云数据集的破损测试与深度解读[J]. 中国传媒大学学报(自然科学版), 2019, 26(3):51-57. (WANG S W, ZHANG B, SUN J C. Breaking test and deep interpretation of PointNet's point cloud dataset[J]. Journal of Communication University of China (Science and Technology), 2019, 26(3):51-57.) [13] 赵中阳,程英蕾,释小松,等. 基于多尺度特征和PointNet的LiDAR点云地物分类方法[J]. 激光与光电子学进展, 2019, 56(5):243-250. (ZHAO Z Y, CHENG Y L, SHI X S, et al. Terrain classification of LiDAR point cloud based on multi-scale features and PointNet[J]. Laser and Optoelectronics Progress, 2019, 56(5):243-250.) [14] QI C R, YI L, SU H, et al. PointNet++:deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st Annual Conference on Neural Information Processing Systems. Red Hook:Curran Associates Inc., 2017:5100-5109. [15] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of the 2016 IEEE conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:779-788 [16] REDMON J, FARHADI A. YOLO9000:better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:6517-6525. [17] SIMON M, MILZ S, AMENDE K, et al. Complex-YOLO:an Euler-region-proposal for real-time 3D object detection on point clouds[C]//Proceedings of the 2018 European Conference on Computer Vision, LNCS 11129. Cham:Springer, 2018:197-209. [18] ALI W, ABDELKARIM S, ZIDAN M, et al. YOLO3D:end-to-end real-time 3D oriented object bounding box detection from LiDAR point cloud[C]//Proceedings of the 2018 European Conference on Computer Vision, LNCS 11131. Cham:Springer, 2018:716-728. [19] 王林,张鹤鹤. Faster R-CNN模型在车辆检测中的应用[J]. 计算机应用, 2018, 38(3):666-670. (WANG L, ZHANG H H. Application of Faster R-CNN model in vehicle detection[J]. Journal of Computer Applications, 2018, 38(3):666-670.) [20] LIANG M, YANG B, WANG S, et al. Deep continuous fusion for multi-sensor 3D object detection[C]//Proceedings of the 15th European Conference on Computer Vision, LNCS 11220. Cham:Springer, 2018:663-678. [21] DU X, ANG M H, KARAMAN S, et al. A general pipeline for 3D detection of vehicles[C]//Proceedings of the 2018 IEEE International Conference on Robotics and Automation. Piscataway:IEEE, 2018:3194-3200. [22] KU J, MOZIFIAN M, LEE J, et al. Joint 3D proposal generation and object detection from view aggregation[C]//Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE, 2018:1-8. [23] QI C R, LIU W, WU C, et al. Frustum PointNets for 3D object detection from RGB-D data[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:918-927. [24] CHEN X, MA H, WAN J, et al. Multi-view 3D object detection network for autonomous driving[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:6526-6534. [25] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [26] LI, B, ZHANG T, XIA T. Vehicle detection from 3D lidar using fully convolutional network[EB/OL].[2019-12-21].http://www.roboticsproceedings.org/rss12/p42.pdf. |