1 曹毛毛,陈万青 . 中国恶性肿瘤流行情况及防控现状[J]. 中国肿瘤临床, 2019, 46(3):145-149. (CAO M M, CHEN W Q. Epidemiology of cancer in China and the current status of prevention and control[J]. Chinese Journal of Clinical Oncology, 2019, 46(3):145-149.)
2 郑莹,吴春晓,吴凡 . 中国女性乳腺癌死亡现况和发展趋势[J]. 中华预防医学杂志, 2011, 45(2):150-154. (ZHENG Y, WU C X, WU F. Status and trends of breast cancer mortality in Chinese females[J]. Chinese Journal of Preventive Medicine, 2011, 45(2): 150-154.)
3 LI Y , CHEN H , WEI X , et al . Mass classification in mammograms based on two-concentric masks and discriminating texton[J]. Pattern Recognition, 2016, 60: 648-656.
4 LIU X , TANG J . Mass classification in mammograms using selected geometry and texture features, and a new SVM-based feature selection method[J]. IEEE Systems Journal, 2013, 8(3): 910-920.
5 VERMA B , MCLEOD P , KLEVANSKY A . A novel soft cluster neural network for the classification of suspicious areas in digital mammograms[J]. Pattern Recognition, 2009, 42(9): 1845-1852.
6 李彦冬,郝宗波,雷航 . 卷积神经网络研究综述[J]. 计算机应用, 2016, 36(9):2508-2515, 2565. (LI Y D, HAO Z B, LEI H. Survey of convolutional neural network[J]. Journal of Computer Applications, 2016, 36(9): 2508-2515, 2565.)
7 LOTTER W , SORENSEN G , COX D . A multi-scale CNN and curriculum learning strategy for mammogram classification[C]// Proceedings of the 2017 International Workshop on Deep Learning in Medical Image Analysis and 2017 International Workshop on Multimodal Learning for Clinical Decision Support, LNCS 10553. Cham: Springer, 2017: 169-177.
8 WANG H , FENG J , ZHANG Z , et al . Breast mass classification via deeply integrating the contextual information from multi-view data[J]. Pattern Recognition, 2018, 80: 42-52.
9 ZHU W , LOU Q , VANG Y S , et al . Deep multi-instance networks with sparse label assignment for whole mammogram classification[C]// Proceedings of the 2017 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 1043. Cham: Springer, 2017: 603-611.
10 DHUNGEL N , CARNEIRO G , BRADLEY A P . Fully automated classification of mammograms using deep residual neural networks[C]// Proceedings of the IEEE 14th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2017: 310-314.
11 PEREK S , HAZAN A , BARKAN E , et al . Mammography dual view mass correspondence[EB/OL]. [2018-07-02].https://arxiv.org/pdf/1807.00637.pdf.
12 DHUNGEL N , CARNEIRO G , BRADLEY A P . A deep learning approach for the analysis of masses in mammograms with minimal user intervention[J]. Medical Image Analysis, 2017, 37: 114-128.
13 YOSINKI J , CLUNE J , BENGIO Y , et al . How transferable are features in deep neural networks?[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 3320-3328.
14 LI F . ImageNet: crowdsourcing, benchmarking and other cool things[J]. CMU VASC Seminar, 2010, 16: 18-25.
15 ZHANG L . Transfer adaptation learning: a decade survey[EB/OL]. [2019-03-12].https://arxiv.org/pdf/1903.04687.pdf.
16 HUANG G , LIU Z , MAATEN L VAN DER , et al . Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269.
17 TAN C , SUN F , KONG T , et al . A survey on deep transfer learning[C]// Proceedings of the 2018 International Conference on Artificial Neural Networks, LNCS 11141. Cham: Springer, 2018: 270-279.
18 LEE R S, GIMENEZ F , HOOGI A , et al . A curated mammography data set for use in computer-aided detection and diagnosis research[J]. Scientific Data, 2017, 4: No.170177.
19 SZEGEDY C , LIU W , JIA Y , et al . Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9.
20 HE K , ZHANG X , REN S , et al . Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
21 SELVARAJU R R , COGSWELL M , DAS A, et al . Grad-CAM: visual explanations from deep networks via gradient-based localization[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 618-626. |