1 |
WOLPERT E A. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects [J]. Archives of General Psychiatry, 1969, 20(2): 246-247. 10.1001/archpsyc.1969.01740140118016
|
2 |
BERRY R B, BROOKS R, GAMALDO C E, et al. The AASM manual for the scoring of sleep and associated events. Rules, terminology and technical specifications version 2.2 [S/OL]. (2015)[2023-05-01]. . 10.5664/jcsm.5176
|
3 |
BANLUESOMBATKUL N, OUPPAPHAN P, LEELAARPORN P, et al. MetaSleepLearner: a pilot study on fast adaptation of bio-signals-based sleep stage classifier to new individual subject using meta-learning[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(6): 1949-1963. 10.1109/jbhi.2020.3037693
|
4 |
KOLEY B, DEY D. An ensemble system for automatic sleep stage classification using single channel EEG signal[J]. Computers in Biology and Medicine, 2012, 42(12): 1186-1195. 10.1016/j.compbiomed.2012.09.012
|
5 |
ANDREOTTI F, PHAN H, COORAY N, et al. Multichannel sleep stage classification and transfer learning using convolutional neural networks[C]// Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2018: 171-174. 10.1109/embc.2018.8512214
|
6 |
SUPRATAK A, DONG H, WU C, et al. DeepSleepNet: a model for automatic sleep stage scoring based on raw single-channel EEG[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(11): 1998-2008. 10.1109/tnsre.2017.2721116
|
7 |
PERSLEV M, DARKNER S, KEMPFNER L, et al. U-Sleep: resilient high-frequency sleep staging[J]. npj Digital Medicine, 2021, 4: No.72. 10.1038/s41746-021-00440-5
|
8 |
金欢欢, 尹海波, 何玲娜. 基于生成少数类技术的深度自动睡眠分期模型[J]. 计算机应用, 2018, 38(9): 2483-2488. 10.11772/j.issn.1001-9081.2018020440
|
|
JIN H H, YIN H B, HE L N. Deep automatic sleep staging model using synthetic minority technique[J]. Journal of Computer Applications, 2018, 38(9): 2483-2488. 10.11772/j.issn.1001-9081.2018020440
|
9 |
BOOSTANI R, KARIMZADEH F, NAMI M. A comparative review on sleep stage classification methods in patients and healthy individuals[J]. Computer Methods and Programs in Biomedicine, 2017, 140: 77-91. 10.1016/j.cmpb.2016.12.004
|
10 |
ANDREOTTI F, PHAN H, COORAY N, et al. Multichannel sleep stage classification and transfer learning using convolutional neural networks[C]// Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2018: 171-174. 10.1109/embc.2018.8512214
|
11 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. 10.1007/978-3-319-24574-4_28
|
12 |
WANG J X. Meta-learning in natural and artificial intelligence[J]. Current Opinion in Behavioral Sciences, 2021, 38: 90-95. 10.1016/j.cobeha.2021.01.002
|
13 |
FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR, 2017: 1126-1135. 10.1109/icra.2016.7487173
|
14 |
VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2016: 3637-3645.
|
15 |
SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 4080-4090.
|
16 |
SUN Q, LIU Y, CHEN Z, et al. Meta-transfer learning through hard tasks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(3): 1443-1456. 10.1109/tpami.2020.3018506
|
17 |
FRENCH R M. Catastrophic forgetting in connectionist networks[J]. Trends in Cognitive Sciences, 1999, 3(4): 128-135. 10.1016/s1364-6613(99)01294-2
|
18 |
KHALIGHI S, SOUSA T, SANTOS J M, et al. ISRUC-Sleep: a comprehensive public dataset for sleep researchers[J]. Computer Methods and Programs in Biomedicine, 2016, 124: 180-192. 10.1016/j.cmpb.2015.10.013
|
19 |
GOLDBERGER A L, AMARAL L A, GLASS L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): e215-e220. 10.1161/01.cir.101.23.e215
|
20 |
KEMP B, ZWINDERMAN A H, TUK B, et al. Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG[J]. IEEE Transactions on Biomedical Engineering, 2000, 47(9): 1185-1194. 10.1109/10.867928
|
21 |
GOUTTE C, GAUSSIER E. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation[C]// Proceedings of the 2005 27th European Conference on IR Research. Cham: Springer, 2005: 345-359. 10.1007/978-3-540-31865-1_25
|
22 |
BRENNAN R L, PREDIGER D J. Coefficient kappa: some uses, misuses, and alternatives[J]. Educational and Psychological Measurement, 1981, 41: 687-699. 10.1177/001316448104100307
|