Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (4): 1158-1165.DOI: 10.11772/j.issn.1001-9081.2023050566
Special Issue: 网络空间安全
• Cyber security • Previous Articles Next Articles
Haoran WANG, Dan YU, Yuli YANG, Yao MA, Yongle CHEN()
Received:
2023-05-09
Revised:
2023-07-28
Accepted:
2023-07-31
Online:
2023-08-03
Published:
2024-04-10
Contact:
Yongle CHEN
About author:
WANG Haoran, born in 1998, M. S. candidate. His research interests include IoT security.Supported by:
通讯作者:
陈永乐
作者简介:
王昊冉(1998—),男,山西临汾人,硕士研究生,CCF会员,主要研究方向:物联网安全基金资助:
CLC Number:
Haoran WANG, Dan YU, Yuli YANG, Yao MA, Yongle CHEN. Domain transfer intrusion detection method for unknown attacks on industrial control systems[J]. Journal of Computer Applications, 2024, 44(4): 1158-1165.
王昊冉, 于丹, 杨玉丽, 马垚, 陈永乐. 面向工控系统未知攻击的域迁移入侵检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1158-1165.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023050566
流量类型 | 描述 |
---|---|
Normal | 正常流量 |
NMRI | 朴素的恶意响应注入攻击 |
CMRI | 复杂的恶意响应注入攻击 |
MSCI | 恶意状态指令注入攻击 |
MPCI | 恶意参数指令注入攻击 |
MFCI | 恶意函数指令注入攻击 |
DoS | 拒绝服务攻击 |
Recon | 侦察攻击 |
Tab. 1 Attack type classification and detailed description
流量类型 | 描述 |
---|---|
Normal | 正常流量 |
NMRI | 朴素的恶意响应注入攻击 |
CMRI | 复杂的恶意响应注入攻击 |
MSCI | 恶意状态指令注入攻击 |
MPCI | 恶意参数指令注入攻击 |
MFCI | 恶意函数指令注入攻击 |
DoS | 拒绝服务攻击 |
Recon | 侦察攻击 |
1 | 刘奇旭, 陈艳辉, 尼杰硕, 等. 基于机器学习的工业互联网入侵检测综述[J]. 计算机研究与发展, 2022, 59( 5): 994- 1014. 10.7544/issn1000-1239.20211147 |
LIU Q X, CHEN Y H, NI J S, et al. Survey on machine learning-based anomaly detection for industrial internet [J]. Journal of Computer Research and Development, 2022, 59( 5): 994- 1014. 10.7544/issn1000-1239.20211147 | |
2 | SINIOSOGLOU I, RADOGLOU-GRAMMATIKIS P, EFSTATHOPOULOS G, et al. A unified deep learning anomaly detection and classification approach for smart grid environments[J]. IEEE Transactions on Network and Service Management, 2021, 18( 2): 1137- 1151. 10.1109/tnsm.2021.3078381 |
3 | BAJIC B, RIKALOVIC A, SUZIC N, et al. Industry 4.0 implementation challenges and opportunities: a managerial perspective[J]. IEEE Systems Journal, 2021, 15( 1): 546- 559. 10.1109/jsyst.2020.3023041 |
4 | BÉCUE A, PRAÇA I, GAMA J. Artificial intelligence, cyber-threats and Industry 4.0: challenges and opportunities[J]. Artificial Intelligence Review, 2021, 54: 3849- 3886. 10.1007/s10462-020-09942-2 |
5 | 徐震, 周晓军, 王利明, 等. PLC攻防关键技术研究进展[J]. 信息安全学报, 2019, 4( 3): 48- 69. |
XU Z, ZHOU X J, WANG L M, et al. Recent advances in PLC attack and protection technology[J]. Journal of Cyber Security, 2019, 4( 3): 48- 69. | |
6 | 傅扬. 国内外工业互联网安全态势和风险分析[J]. 信息安全研究, 2019, 5( 8): 728- 733. 10.3969/j.issn.2096-1057.2019.08.014 |
FU Y. Security situation and threats analysis of industrial internet in China and abroad[J]. Journal of Information Security Research, 2019, 5( 8): 728- 733. 10.3969/j.issn.2096-1057.2019.08.014 | |
7 | 房岭峰, 黄丽, 赵琪, 等. 从委内瑞拉大停电看特大型城市电网安全问题[J]. 电力与能源, 2019, 40( 6): 674- 677. |
FANG L F, HUANG L, ZHAO Q, et al. Discussion on megalopolis power grid safety from the perspective of Venezuelan blackout[J]. Power and Energy, 2019, 40( 6): 674- 677. | |
8 | MISHRA P, VARADHARAJAN V, TUPAKULA U, et al. A detailed investigation and analysis of using machine learning techniques for intrusion detection[J]. IEEE Communications Surveys & Tutorials, 2019, 21( 1): 686- 728. 10.1109/comst.2018.2847722 |
9 | ALANI M M. Big data in cybersecurity: a survey of applications and future trends[J]. Journal of Reliable Intelligent Environments, 2021, 7: 85- 114. 10.1007/s40860-020-00120-3 |
10 | 张子迎, 潘思辰, 王宇华. 基于单类支持向量机的工业控制系统入侵检测[J]. 哈尔滨工程大学学报, 2022, 43( 7): 1043- 1050. 10.11990/jheu.202106073 |
ZHANG Z Y, PAN S C, WANG Y H. Research on ICS intrusion detection methods based on one class support vector machine [J]. Journal of Harbin Engineering University, 2022, 43( 7): 1043- 1050. 10.11990/jheu.202106073 | |
11 | LI Y, LI Y, ZHANG S. Intrusion detection algorithm based on deep learning for industrial control networks[C]// Proceedings of the 2019 2nd International Conference on Robotics, Control and Automation Engineering. New York: ACM, 2019: 40- 44. 10.1145/3372047.3372092 |
12 | LIANG W, LI K-C, LONG J, et al. An industrial network intrusion detection algorithm based on multifeature data clustering optimization model[J]. IEEE Transactions on Industrial Informatics, 2020, 16( 3): 2063- 2071. 10.1109/tii.2019.2946791 |
13 | 石乐义, 侯会文, 徐兴华, 等. 基于特征选择和时间卷积网络的工业控制系统入侵检测[J]. 工程科学与技术, 2022, 54( 6): 238- 247. |
SHI L Y, HOU H W, XU X H, et al. Industrial control system intrusion detection based on feature selection and temporal convolutional network [J]. Engineering Science and Technology, 2022, 54( 6): 238- 247. | |
14 | GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17( 1): 2096- 2130. |
15 | CAI Z, XIONG Z, XU H, et al. Generative adversarial networks: a survey toward private and secure applications[J]. ACM Computing Surveys, 2021, 54( 6): No. 132. 10.1145/3459992 |
16 | SINGLA A, BERTINO E, VERMA D. Preparing network intrusion detection deep learning models with minimal data using adversarial domain adaptation[C]// Proceedings of the 15th ACM Asia Conference on Computer and Communications Security. New York: ACM, 2020: 127- 140. 10.1145/3320269.3384718 |
17 | CHEN Y, SU S, YU D, et al. Cross-domain industrial intrusion detection deep model trained with imbalanced data[J]. IEEE Internet of Things Journal, 2022, 10( 1): 584- 596. 10.1109/jiot.2022.3201888 |
18 | CHEUNG S, DUTERTRE B, FONG M, et al. Using model-based intrusion detection for SCADA networks[C/OL]// Proceedings of the 2007 SCADA Security Scientific Symposium [2023-05-01]. . |
19 | MORRIS T, VAUGHN R, DANDASS Y. A retrofit network intrusion detection system for MODBUS RTU and ASCII industrial control systems[C]// Proceedings of the 2012 45th Hawaii International Conference on System Sciences. Washington, DC: IEEE Computer Society, 2012: 2338- 2345. 10.1109/hicss.2012.78 |
20 | DEVAN P, KHARE N. An efficient XGBoost-DNN-based classification model for network intrusion detection system[J]. Neural Computing and Applications, 2020, 32( 16): 12499- 12514. 10.1007/s00521-020-04708-x |
21 | SUN P, LIU P, LI Q, et al. DL-IDS: extracting features using CNN-LSTM hybrid network for intrusion detection system[J]. Security and Communication Networks, 2020, 2020: 8890306. 10.1155/2020/8890306 |
22 | TIAN Q, HAN D, LI K-C, et al. An intrusion detection approach based on improved deep belief network[J]. Applied Intelligence, 2020, 50: 3162- 3178. 10.1007/s10489-020-01694-4 |
23 | ALEM S, ESPES D, NANA L, et al. A novel bi-anomaly-based intrusion detection system approach for industry 4.0[J]. Future Generation Computer Systems, 2023, 145: 267- 283. 10.1016/j.future.2023.03.024 |
24 | SIVAMOHAN S, SRIDHAR S S. An optimized model for network intrusion detection systems in industry 4.0 using XAI based Bi-LSTM framework[J]. Neural Computing and Applications, 2023, 35( 15): 11459- 11475. 10.1007/s00521-023-08319-0 |
25 | WANG W, WANG C, WANG Z, et al. Abnormal detection technology of industrial control system based on transfer learning[J]. Applied Mathematics and Computation, 2022, 412: 126539. 10.1016/j.amc.2021.126539 |
26 | VOWELS M J, CAMGOZ N C, BOWDEN R. D’ya like DAGs? A survey on structure learning and causal discovery[J]. ACM Computing Surveys, 2022, 55( 4): No. 82. 10.1145/3527154 |
27 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770- 778. 10.1109/cvpr.2016.90 |
28 | MORRIS T, GAO W. Industrial control system traffic data sets for intrusion detection research[C]// Proceedings of the 2014 International Conference on Critical Infrastructure Protection. Berlin: Springer, 2014: 65- 78. 10.1007/978-3-662-45355-1_5 |
29 | YU C, WANG J, CHEN Y, et al. Transfer learning with dynamic adversarial adaptation network[C]// Proceedings of the 2019 IEEE International Conference on Data Mining. Piscataway: IEEE, 2019: 778- 786. 10.1109/icdm.2019.00088 |
[1] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[2] | Feiyu ZHAI, Handa MA. Hybrid classical-quantum classification model based on DenseNet [J]. Journal of Computer Applications, 2024, 44(6): 1905-1910. |
[3] | Wangjun SHI, Jing WANG, Xiaojun NING, Youfang LIN. Sleep stage classification model by meta transfer learning in few-shot scenarios [J]. Journal of Computer Applications, 2024, 44(5): 1445-1451. |
[4] | Hongtian LI, Xinhao SHI, Weiguo PAN, Cheng XU, Bingxin XU, Jiazheng YUAN. Few-shot object detection via fusing multi-scale and attention mechanism [J]. Journal of Computer Applications, 2024, 44(5): 1437-1444. |
[5] | Sunjie YU, Hui ZENG, Shiyu XIONG, Hongzhou SHI. Incentive mechanism for federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(2): 344-352. |
[6] | Hui ZHOU, Yuling CHEN, Xuewei WANG, Yangwen ZHANG, Jianjiang HE. Deep shadow defense scheme of federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(1): 223-232. |
[7] | Qiujie LIU, Yuan WAN, Jie WU. Deep bi-modal source domain symmetrical transfer learning for cross-modal retrieval [J]. Journal of Computer Applications, 2024, 44(1): 24-31. |
[8] | Kezheng CHEN, Xiaoran GUO, Yong ZHONG, Zhenping LI. Relation extraction method based on negative training and transfer learning [J]. Journal of Computer Applications, 2023, 43(8): 2426-2430. |
[9] | Zexi JIN, Lei LI, Ji LIU. Transfer learning model based on improved domain separation network [J]. Journal of Computer Applications, 2023, 43(8): 2382-2389. |
[10] | Bona XUAN, Jin LI, Yafei SONG, Zexuan MA. Malicious code classification method based on improved MobileNetV2 [J]. Journal of Computer Applications, 2023, 43(7): 2217-2225. |
[11] | Shaoquan CHEN, Jianping CAI, Lan SUN. Differential privacy generative adversarial network algorithm with dynamic gradient threshold clipping [J]. Journal of Computer Applications, 2023, 43(7): 2065-2072. |
[12] | Anyang LIU, Huaici ZHAO, Wenlong CAI, Zechao XU, Ruideng XIE. Adaptive image deblurring generative adversarial network algorithm based on active discrimination mechanism [J]. Journal of Computer Applications, 2023, 43(7): 2288-2294. |
[13] | Xin JIN, Yangchuan LIU, Yechen ZHU, Zijian ZHANG, Xin GAO. Sinogram inpainting for sparse-view cone-beam computed tomography image reconstruction based on residual encoder-decoder generative adversarial network [J]. Journal of Computer Applications, 2023, 43(6): 1950-1957. |
[14] | Huibin ZHANG, Liping FENG, Yaojun HAO, Yining WANG. Ancient mural dynasty identification based on attention mechanism and transfer learning [J]. Journal of Computer Applications, 2023, 43(6): 1826-1832. |
[15] | Jinwen GUO, Xinghua MA, Gongning LUO, Wei WANG, Yang CAO, Kuanquan WANG. Guidewire artifact removal method of structure-enhanced IVOCT based on Transformer [J]. Journal of Computer Applications, 2023, 43(5): 1596-1605. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||