1 何高峰,杨明,罗军舟,等.Tor匿名通信流量在线识别方法[J].软件学报,2013,24(3):540-556. HEG F, YANGM, LUOJ Z, et al. Online identification of Tor anonymous communication traffic [J]. Journal of Software, 2013, 24(3): 540-556. 2 何永忠,李响,陈美玲,等.基于云流量混淆的Tor匿名通信识别方法[J].工程科学与技术,2017,49(2):121-132. HEY Z, LIX, CHENM L, et al. Identification of Tor anonymous communication with cloud traffic obfuscation [J]. Advanced Engineering Sciences, 2017, 49(2): 121-132. 3 PERRYM. A critique of website traffic fingerprinting attacks [EB/OL]. [2019-03-22]. https://blog.torproject.org/critique-website-traffic-fingerprinting-attacks. 4 JUAREZM, AFROZS, ACARG, et al. A critical evaluation of website fingerprinting attacks [C]// Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2014: 263-274. 5 HERRMANND, WENDOLSKYR, FEDERRATHH. Website fingerprinting: attacking popular privacy enhancing technologies with the multinomial naïve-Bayes classifier [C]// Proceedings of the 2009 ACM Workshop on Cloud computing security. New York: ACM, 2009: 31-42. 6 PANCHENKOA, NIESSENL, ZINNENA, et al. Website fingerprinting in onion routing based anonymization networks [C]// Proceedings of the 10th Annual ACM Workshop on Privacy in the Electronic Society. New York: ACM, 2011: 103-114. 7 WANGT, CAIX, NITHYANANDR, et al. Effective attacks and provable defenses for website fingerprinting [C]// Proceedings of the 23rd USENIX Security Symposium. Berkeley: USENIX Association, 2014: 143-157. 8 PANCHENKOA, LANZEF, PENNEKAMPJ, et al. Website fingerprinting at internet scale [EB/OL]. [2019-03-22]. https://www.comsys.rwth-aachen.de/fileadmin/papers/2016/2016-panchenko-ndss-fingerprinting.pdf. 9 HAYESJ, DANEZISG. k-fingerprinting: a robust scalable website fingerprinting technique [C]// Proceedings of the 25th USENIX Security Symposium. Berkeley: USENIX Association, 2016: 1187-1203. 10 RIMMERV, PREUVENEERSD, JUAREZM, et al. Automated website fingerprinting through deep learning [EB/OL]. [2019-03-22].https://arxiv.org/pdf/1708.06376.pdf. 11 SIRINAMP, IMANIM, JUAREZM, et al. Deep fingerprinting: undermining website fingerprinting defenses with deep learning [C]// Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2018: 1928-1943. 12 NATARAJL, KARTHIKEYANS, JACOBG, et al. Malware images: visualization and automatic classification [C]// Proceedings of the 8th International Symposium on Visualization for Cyber Security. New York: ACM, 2011: Article No. 4. 13 HEK, ZHANGX, RENS, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 14 WANGT, GOLDBERGI. On realistically attacking tor with website fingerprinting [J]. Proceedings on Privacy Enhancing Technologies, 2016(4): 21-36. 15 DYERK P, COULLS E, RISTENPARTT, et al. Peek-a-boo, I still see you: why efficient traffic analysis countermeasures fail[C]// Proceedings of the 2012 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2012: 332-346. 16 CAIX, NITHYANANDR, WANGT, et al. A systematic approach to developing and evaluating website fingerprinting defenses[C]// Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2014: 227-238. 17 JUAREZM, IMANIM, PERRYM, et al. Toward an efficient website fingerprinting defense [C]// Proceedings of the 2016 European Symposium on Research in Computer Security, LNCS 9878. Cham: Springer, 2016: 27-46. 18 WANGT, GOLDBERGI. Walkie-talkie: an efficient defense against passive website fingerprinting attacks [C]// Proceedings of the 26th USENIX Security Symposium. Berkeley: USENIX Association, 2017: 1375-1390. |