[1] 罗会兰, 童康, 孔繁胜. 基于深度学习的视频中人体动作识别进展综述[J]. 电子学报,2019,47(5):1162-1173.(LUO H L, TONG K,KONG F S. The progress of human action recognition in videos based on deep learning:a review[J]. Acta Electronica Sinica,2019,47(5):1162-1173.) [2] LAPTEV I. On space-time Interest points[J]. International Journal of Computer Vision,2005,64(2/3):107-123. [3] WANG H, SCHMID C. Action recognition with improved trajectories[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway:IEEE,2013:3551-3558. [4] LIU Z,HU H. Spatiotemporal relation networks for video action recognition[J]. IEEE Access,2019,7:14969-14976. [5] 陈胜娣, 魏维, 何冰倩, 等. 基于改进的深度卷积神经网络的人体动作识别方法[J]. 计算机应用研究,2019,36(3):945-949, 953.(CHEN S D,WEI W,HE B Q,et al. Action recognition based on improved deep convolutional neural network[J].Application Research of Computers, 2019, 36(3):945-949,953.) [6] CLOUTMAN L L. Interaction between dorsal and ventral processing streams:where,when and how?[J]. Brain and Language,2013, 127(2):251-263. [7] SIMONYAN K, ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[EB/OL].[2020-03-08]. https://arxiv.org/pdf/1406.2199.pdf. [8] WANG L, XIONG Y, WANG Z, et al. Temporal segment networks:towards good practices for deep action recognition[C]//Proceedings of the 2016 European Conference on Computer Vision, LNCS 9912. Cham:Springer,2016:20-36. [9] SUN S,KUANG Z,SHENG L,et al. Optical flow guided feature:a fast and robust motion representation for video action recognition[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:1390-1399. [10] HAO W,ZHANG Z. Spatiotemporal distilled dense-connectivity network for video action recognition[J]. Pattern Recognition, 2019,92:13-24. [11] TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE,2015:4489-4497. [12] 杨天明, 陈志, 岳文静. 基于视频深度学习的时空双流人物动作识别模型[J]. 计算机应用,2018,38(3):895-899,915. (YANG T M,CHEN Z,YUE W J,et al. Spatio-temporal twostream human action recognition model based on video deep learning[J]. Journal of Computer Applications,2018,38(3):895-899,915.) [13] GERS F A,SCHMIDHUBER J,CUMMINS F. Learning to forget:continual prediction with LSTM[J]. Neural Computation,2000, 12(10):2451-2471. [14] 毛志强, 马翠红, 崔金龙, 等. 基于时空双流卷积与LSTM的人体动作识别[J]. 软件,2018,39(9):9-12.(MAO Z Q,MA C H,CUI J L,et al. Human action recognition model based on spatio-temporal two-stream convolution and LSTM[J]. Computer Engineering & Software,2018,39(9):9-12.) [15] HUANG G,LIU Z,VAN DER MAATEN L,et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:2261-2269. [16] DENG J,DONG W,SOCHER R,et al. ImageNet:a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2009:248-255. [17] SOOMRO K,ZAMIR A R,SHAH M,et al. UCF101:a dataset of 101 human actions classes from videos in the wild[DB/OL].[2020-03-10]. https://arxiv.org/pdf/1212.0402.pdf. [18] KUEHNE H,JHUANG H,Stiefelhagen R,et al. HMDB51:a large video database for human motion recognition[M]. Berlin:Springer,2013:571-582. [19] SUN L,JIA K,CHEN K,et al. Lattice long short-term memory for human action recognition[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:2166-2175. [20] CARREIRA J,ZISSERMAN A. Quo vadis,action recognition? A new model and the kinetics dataset[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:4724-4733. |