[1] SHI W,CABALLERO J,LEDIG C,et al. Cardiac image superresolution with global correspondence using multi-atlas PatchMatch[C]//Proceedings of the 201316th International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 8151. Berlin:Springer,2013:9-16. [2] YILDIRIM D,GÜNGÖR O. A novel image fusion method using IKONOS satellite images[J]. Journal of Geodesy and Geoinformation,2012,1(1):75-83. [3] 苏衡, 周杰, 张志浩. 超分辨率图像重建方法综述[J]. 自动化学报, 2013, 39(8):1202-1213.(SU H,ZHOU J,ZHANG Z H. Survey of super-resolution image reconstruction methods[J]. Acta Automatica Sinica,2013,39(8):1202-1213.) [4] DONG C,LOY C C,TANG X. Accelerating the super-resolution convolutional neuralnetwork[C]//Proceedings of the 201614th European Conference on Computer Vision,LNCS 9906. Cham:Springer,2016:391-407. [5] SHI W,CABALLERO J,HUSZÁR F,et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neuralnetwork[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:1874-1883. [6] DONG C,LOY C C,HE K,et al. Learning a deep convolutionalnetwork for image super-resolution[C]//Proceedings of the 201413th European Conference on Computer Vision, LNCS 8692. Cham:Springer,2014:184-199. [7] KIM J,LEE J K,LEE K M. Accurate image super-resolution using very deep convolutionalnetworks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:1646-1654. [8] KIM J, LEE J K, LEE K M. Deeply-recursive convolutionalnetwork for image super-resolution[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:1637-1645. [9] TAI Y,YANG J,LIU X. Image super-resolution via deep recursive residualnetwork[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:2790-2798. [10] 黄陶冶, 赵建伟. 周正华. 双层可变形卷积网络的超分辨率图像重建[J]. 计算机应用, 2019, 39(S2):68-74.(HUANG T Y, ZHAO J W,ZHOU Z H. Super-resolution reconstruction using bilayer deformable convolutionalnetworks[J]. Journal of Computer Applications,2019,39(S2):68-74.) [11] LAI W,HUANG J,AHUJA N,et al. Deep Laplacian pyramidnetworks for fast and accurate super-resolution[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:5835-5843. [12] HARIS M, SHAKHNAROVICH G, UKITA N. Deep backprojectionnetworks for super-resolution[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:1664-1673. [13] QIU Y,WANG R,TAO D,et al. Embedded block residualnetwork:a recursive restoration model for single-image superresolution[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE,2019:4179-4188. [14] LI J,FANG F,MEI K,et al. Multi-scale residualnetwork for image super-resolution[C]//Proceedings of the 201815th European Conference on Computer Vision,LNCS 11212. Cham:Springer,2018:527-542. [15] ZHANG Y,LI K,LI K,et al. Image super-resolution using very deep residual channel attentionnetworks[C]//Proceedings of the 201815th European Conference on Computer Vision, LNCS 11211. Cham:Springer,2018:294-310. [16] ZHANG Y,TIAN Y,KONG Y,et al. Residual densenetwork for image super-resolution[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:2472-2481. [17] HU X,MU H,ZHANG X,et al. Meta-SR:a magnificationarbitrarynetwork for super-resolution[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:1575-1584. [18] YANG J,WRIGHT J,HUANG T S,et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing,2010,19(11):2861-2873. [19] MARTIN D,FOWLKES C,TAL D,et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings of the 20018th IEEE International Conference on Computer Vision. Piscataway:IEEE,2001:416-423. [20] BEVILACQUA M,ROUMY A,GUILLEMOT C,et al. Lowcomplexity single-image super-resolution based on nonnegative neighbor embedding[C]//Proceedings of the 201223rd British Machine Vision Conference. Durham:BMVA Press, 2012:No. 135. [21] ZEYDE R,ELAD M,PROTTER M. On single image scale-up using sparse-representations[C]//Proceedings of the 20107th International Conference on Curves and Surfaces,LNCS 6920. Berlin:Springer,2010:711-730. [22] ARBELÁEZ P, MAIRE M, FOWLKES C, et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011, 33(5):898-916. [23] MATSUI Y,ITO K,ARAMAKI Y,et al. Sketch-based manga retrieval using manga109 dataset[J]. Multimedia Tools and Applications,2017,76(20):21811-21838. [24] KINGMA D P, BA J L. Adam:a method for stochastics optimization[EB/OL].[2020-02-07]. https://arxiv.org/pdf/1412.6980.pdf. |