[1] MOORTHY A K, BOVIK A C A two-step framework for constructing blind image quality indices[J]. IEEE Signal Processing Letters,2010,17(5):513-516. [2] MOORTHY A K, BOVIK A C. Statistics of natural image distortions[C]//Proceedings of the 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway:IEEE,2010:962-965. [3] MOORTHY A K,BOVIK A C. Blind image quality assessment:from natural scene statistics to perceptual quality[J]. IEEE Transactions on Image Processing,2011,20(12):3350-3364. [4] CHETOUANI A,BEGHDADI A,DERICHE M. A hybrid system for distortion classification and image quality evaluation[J]. Signal Processing:Image Communication,2012,27(9):948-960. [5] MITTAL A,MOORTHY A K,BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing,2012,21(12):4695-4708. [6] KANG L,YE P,LI Y,et al. Simultaneous estimation of image quality and distortion via multi-task convolutional neural networks[C]//Proceedings of the 2015 IEEE International Conference on Image Processing. Piscataway:IEEE,2015:2791-2795. [7] WANG H,ZUO L,FU J. Distortion recognition for image quality assessment with convolutional neural network[C]//Proceedings of the 2016 IEEE International Conference on Multimedia and Expo. Piscataway:IEEE,2016:1-6. [8] 邬美银, 陈黎, 田菁. 基于卷积神经网络的视频图像失真检测及分类[J]. 计算机应用研究, 2016, 33(9):2827-2830.(WU M Y, CHEN L, TIAN J. Video image distortion detection and classification based on CNN[J]. Application Research of Computers,2016,33(9):2827-2830.) [9] MA K,LIU W,ZHANG K,et al. End-to-end blind image quality assessment using deep neural networks[J]. IEEE Transactions on Image Processing,2018,27(3):1202-1213. [10] LIANG D,GAO X,LU W,et al. Deep multi-label learning for image distortion identification[J]. Signal Processing,2020,172:Article No. 107536. [11] 朱可. 面向退化增强及复原图像的主客观一致图像质量评价方法[D]. 南京:南京航空航天大学, 2017:17-20.(ZHU K. Image quality assessment satisfying subjective and objective consistency for degraded, enhanced and restored images[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017:17-20.) [12] SZEGEDY C,VANHOUCKE V,IOFFE S,et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:2818-2826. [13] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2020-08-10]. https://arxiv.org/pdf/1409.1556.pdf. [14] NAIR V,HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]//Proceedings of the 2010 27th International Conference on Machine Learning. Madison:Omnipress,2010:807-814. [15] KIM J,LEE S. Fully deep blind image quality predictor[J]. IEEE Journal of Selected Topics in Signal Processing,2017,11(1):206-220. [16] SHEIKH H R,WANG Z,CORMACK L,et al. Live image quality assessment database release 2[DB/OL].[2020-08-10]. http://live.ece.utexas.edu/research/quality. [17] 肖永旗. 基于自然场景统计的无参考遥感图像质量评价[D]. 南京:南京航空航天大学, 2018:11-36.(XIAO Y Q. Noreference remote sensing image quality assessment method based on natural scene statistics[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2018:11-36.) |