[1] FRENCH G,FISHER M,MACKIEWICZ M,et al. Convolutional neural networks for counting fish in fisheries surveillance video[C]//Proceedings of the 2015 Workshop on Machine Vision of Animals and Their Behavior. Durham:BMVA Press,2015:7. [2] LEMPITSKY V,ZISSERMAN A. Learning to count objects in images[C]//Proceedings of the 23rd International Conference on Neural Information Processing. Red Hook:Curran Associates Inc., 2010:1324-1332. [3] GUERRERO-GÓMEZ-OLMEDO R,TORRE-JIMÉNEZ B,LÓPEZSASTRE R,et al. Extremely overlapping vehicle counting[C]//Proceeding of the 2015 Iberian Conference on Pattern Recognition and Image Analysis,LNCS 9117. Cham:Springer,2015:423-431. [4] IDREES H,SOOMRO K,SHAH M. Detecting humans in dense crowds using locally-consistent scale prior and global occlusion reasoning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(10):1986-1998. [5] CHEN K,LOY C C,GONG S,et al. Feature mining for localised crowd counting[C]//Proceeding of the 2012 British Machine Vision Conference. Durham:BMVA Press,2012:No. 21. [6] CHAN A B,VASCONCELOS N. Bayesian Poisson regression for crowd counting[C]//Proceedings of the IEEE 12th International Conference on Computer Vision. Piscataway:IEEE, 2009:545-551. [7] RYAN D,DENMAN S,FOOKES C,et al. Crowd counting using multiple local features[C]//Proceeding of the 2009 Digital Image Computing:Techniques and Applications. Piscataway:IEEE, 2009:81-88. [8] SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-12-01]. https://arxiv.org/pdf/1409.1556.pdf. [9] CHOLLET F. Xception:deep learning with depthwise separable convolutions[C]//Proceeding of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:1800-1807. [10] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM,2017,60(6):84-90. [11] ZHANG Y, ZHOU D, CHEN S, et al. Single-image crowd counting via multi-column convolutional neural network[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:589-597. [12] ZHANG C,LI H,WANG X,et al. Cross-scene crowd counting via deep convolutional neural networks[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:833-841. [13] IDREES H,SALEEMI I,SEIBERT C,et al. Multi-source multiscale counting in extremely dense crowd images[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2013:2547-2554. [14] IDREES H,TAYYAB M,ATHREY K,et al. Composition loss for counting,density map estimation and localization in dense crowds[C]//Proceedings of the 2018 European Conference on Computer Vision. Berlin:Springer,2018:544-559. [15] SAM D B,SURYA S,BABU R V. Switching convolutional neural network for crowd counting[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:4031-4039. [16] SINDAGI V A,PATEL V M. Generating high-quality crowd density maps using contextual pyramid CNNs[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:1879-1888. [17] 陆金刚, 张莉. 基于多尺度多列卷积神经网络的密集人群计数模型[J]. 计算机应用,2019,39(12):3445-3449.(LU J G, ZHANG L. Crowd counting model based on multi-scale multicolumn convolutional neural network[J]. Journal of Computer Applications,2019,39(12):3445-3449.) [18] LI Y, ZHANG X, CHEN D. CSRNet:dilated convolutional neural networks for understanding the highly congested scenes[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:1091-1100. [19] 陈美云, 王必胜, 曹国, 等. 基于像素级注意力机制的人群计数方法[J]. 计算机应用,2020,40(1):56-61.(CHEN M Y, WANG B S,CAO G,et al. Crowd counting method based on pixel-level attention mechanism[J]. Journal of Computer Applications,2020,40(1):56-61.) [20] ZHU L,ZHAO Z,LU C,et al. Dual path multi-scale fusion networks with attention for crowd counting[EB/OL].[2019-12-10]. https://arxiv.org/pdf/1902.01115.pdf. [21] ZHANG Y,ZHOU C,CHANG F,et al. Multi-resolution attention convolutional neural network for crowd counting[J]. Neurocomputing,2018,329:144-152. [22] ZOU Z,LIU Y,XU S,et al. Crowd counting via hierarchical scale recalibration network[EB/OL].[2020-02-01]. https://arxiv.org/pdf/2003.03545.pdf. [23] VARIOR R R,SHUAI B,TIGHE J,et al. Multi-scale attention network for crowd counting[EB/OL].[2020-02-01]. https://arxiv.org/pdf/1901.06026.pdf. [24] WOO S,PARK J,LEE J Y,et al. CBAM:convolutional block attention module[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11211. Cham:Springer, 2018:3-19. [25] CAO X,WANG Z,ZHAO Y,et al. Scale aggregation network for accurate and efficient crowd counting[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11209. Cham:Springer,2018:757-773. [26] ZHANG A,SHEN J,XIAO Z,et al. Relational attention network for crowd counting[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE, 2019:6787-6796. |