[1] 张英强. 依托科技进步引领现代甘蔗产业[J]. 农家之友,2009(8):28-29.(ZHANG Y Q. Relying on technological progress to guide the modern sugarcane industry[J]. Farmer's Friend,2009(8):28-29.) [2] BROCKWELL P J. Time Series:Theory and Methods[M]. Berlin:Springer,2015:77-113. [3] 汤岩. 时间序列分析的研究与应用[D]. 哈尔滨:东北农业大学,2007:4-19.(TANG Y. The research and application of time series analysis[D]. Harbin:Northeast Agricultural University, 2007:4-19.) [4] WU C L,CHAU K W. Data-driven models for monthly streamflow time series prediction[J]. Engineering Applications of Artificial Intelligence,2010,23(8):1350-1367. [5] 李丹青. 企业两化融合决策支持系统的案例推理机制研究[D]. 北京:北京交通大学,2014:1-2.(LI D Q. Study on the CBR mechanism of DSS for enterprises' ‘integration of informatization and industrialization’[D]. Beijing:Beijing Jiaotong Universty, 2014:1-2.) [6] GREENHOUSE J B,KASS R E,TSAY R S. Fitting nonlinear models with ARMA errors to biological rhythm data[J]. Statistics in Medicine,1987,6(2):167-183. [7] EE J Y C, KADER A S A, AHMAD Z, et al. Univariate throughput forecasting models on container terminal equipment planning[J]. Jurnal Teknologi (Sciences and Engineering),2014,69(7):163-171. [8] 武乃虎,麻常辉,冯江霞, 等. 基于时间序列和神经网络法的风电功率预测[J]. 山东大学学报(工学版),2012,44(1):85-89. (WU N H,MA C H,FENG J X,et al. Wind pow er prediction based on time-series and BP-ANN[J]. Journal of Shandong University(Engineering Science),2012,44(1):85-89.) [9] WANG C,ZHAO S,KALRA A,et al. Webpage depth viewability prediction using deep sequential neural networks[J]. IEEE Transactions on Knowledge & Data Engineering,2019,31(3):601-614. [10] 王慧健. 基于神经网络方法的时间序列预测方案研究[D]. 南京:南京邮电大学, 2019:1-3.(WANG H J. Research on time series prediction schemes based on neural network methods[D]. Nanjing:Nanjing University of Posts and Telecommunications, 2019:1-3.) [11] YANG S H,HUANG W J,TSAI J F,et al. Symbiotic structure learning algorithm for feedforward neural-network-aided grey model and prediction applications[J]. IEEE Access,2017,5:9378-9388 [12] 李媛,武岩岩,王思琪. 基于混沌时间序列的Elman神经网络工业用电预测[J]. 沈阳工业大学学报,2016,38(2):196-200. (LI Y, WU Y Y, WANG S Q. Elman neural network for forecasting industrial electricity consumption based on chaotic time series[J]. Journal of Shenyang University of Technology,2016, 38(2):196-200.) [13] GAO X Z,GAO X M,OVASKA S J. A modified Elman neural network model with application to dynamical systems identification[C]//Proceedings of the 1996 IEEE International Conference on Systems. Piscataway:IEEE,1996:1376-1382. [14] 韩旭明. Elman神经网络的应用研究[D]. 天津:天津大学, 2006:11-14.(HAN X M. A study on application of elman neural network[D]. Tianjin:Tianjin University,2006:11-14.) [15] 任丽娜. 基于Elman神经网络的中期电力负荷预测模型研究[D]. 兰州:兰州理工大学,2007:36-38.(REN L N. Research on medium-term electrical load forecasting model based on elman neural network[D]. Lanzhou:Lanzhou University of Technology, 2007:36-38.) [16] 夏青. 节假日铁路客流波动规律分析及其在客流预测中的应用研究[D]. 北京:北京交通大学,2011:8-21.(XIA Q. Research on fluctuation of holiday railway passenger flow and application on forecast of passenger flow[D]. Beijing:Beijing Jiaotong University,2011:8-21.) [17] VAZQUEZ R A. Training spiking neural models using cuckoo search algorithm[C]//Proceeding of the 2011 IEEE International Conference on Evolutionary Computation. Piscataway:IEEE, 2011:679-686. [18] 王李进,尹义龙,钟一文. 逐维改进的布谷鸟搜索算法[J]. 软件学报,2013, 24(11):2687-2698.(WANG L J,YIN Y L, ZHONG Y W. Cuckoo search algorithm with dimension by dimension improvement[J]. Journal of Software,2013, 24(11):2687-2698.) [19] 朱文金. 数据预处理在预测模型中的应用[D]. 兰州:兰州大学,2010:16-37.(ZHU W J. Application of pre-treatment for data in forecasting models[D]. Lanzhou:Lanzhou University, 2010:16-37.) [20] OUAARAB A,BELAÏD AHIOD,YANG X S. Discrete cuckoo search algorithm for the travelling salesman problem[J]. Neural Computing and Applications,2014, 24(7/8):1659-1669. [21] 贾宁, 郑纯军. 基于LSTM-DA神经网络的农产品价格指数短期预测模型[J]. 计算机科学, 2019, 46(S2):62-65, 71.(JIA N, ZHENG C J. Short-term forecasting model of agricultural product price index based on LSTM-DA neural network[J]. Computer Science,2019,46(S2):62-65, 71.) [22] 刘菲, 郝风杰, 郝敬全, 等. 基于优化LSTM模型的停车泊位预测算法[J]. 计算机应用, 2019, 39(S1):65-69.(LIU F,HAO F J, HAO J Q, et al. Parking prediction algorithm based on optimized LSTM model[J]. Journal of Computer Applications, 2019, 39(S1):65-69.) [23] 苏照军, 郭锐锋, 高岑,等. 基于组合模型的农产品物价预测算法[J]. 计算机系统应用, 2019, 28(5):185-189.(SU Z J,GUO R F, GAO C, et al. Agricultural product price forecasting algorithm based on combination model[J]. Computer Systems & Applications, 2019, 28(5):185-189.) [24] 黄鸿云, 刘卫校, 丁佐华. 基于多维灰色模型及神经网络的销售预测[J]. 软件学报, 2019, 30(4):1031-1044.(HUANG H Y, LIU W X, DING Z H. Sales forecasting based on multidimensional grey model and neural network[J]. Journal of Software,2019, 30(4):1031-1044.) [25] 代亮, 梅洋, 钱超, 等. 基于深度学习的短时交通量预测研究综述[J]. 计算机科学, 2019, 46(3):39-47.(DAI L,MEI Y,QIAN C,et al. Survey on short-term traffic flow forecasting based on deep learning[J]. Computer Science,2019, 46(3):39-47.) [26] 周雨婷. WA-ANN模型在水文时间序列长期预报中的应用[D]. 南京:南京大学, 2019:1-5.(ZHOU Y T. The application of several WA-ANNs in the long-term forecasting for the hydrological time series[D]. Nanjing:Nanjing University,2019:1-5.) [27] 况东钰. 基于时间序列分析的网约车需求短时预测研究[D]. 北京交通大学, 2019:1-6, 37-49.(KUANG D Y. Research on short-term forecast of online car-hailing demand based on time series analysis[D]. Beijing:Beijing Jiaotong University,2019:1-6, 37-49.) [28] 曾豪. 基于LSTM的环境污染时间序列预测模型的研究[D]. 武汉:华中科技大学, 2019:1-18.(Research on environmental pollution time series prediction model based on LSTM[D]. Wuhan:Huazhong University of Science and Technology,2019:1-18.) [29] SAOUD L S,GHORBANI R. Metacognitive octonion-valued neural networks as they relate to time series analysis[J]. IEEE Transactions on Neural Networks and Learning Systems,2019,31(2):539-548. [30] 谢博, 施富强, 廖学燕, 等. 边坡位移的EEMD-PSO-ELM模型预测方法[J]. 中国安全科学学报, 2020, 30(3):157-162.(XIE B, SHI F Q,LIAO X Y,et al. Slope displacement prediction method based on EEMD-PSO-ELM model[J]. China Safety Science Journal,2020, 30(3):157-162.) |