Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (11): 3427-3434.DOI: 10.11772/j.issn.1001-9081.2023111583
• Data science and technology • Previous Articles Next Articles
Yu ZENG1,2, Yang ZHANG1,2,3(), Shang ZENG1,2, Maoli FU1,2,3, Qixue HE1,2, Linlong ZENG1,2
Received:
2023-11-20
Revised:
2024-01-15
Accepted:
2024-02-05
Online:
2024-02-29
Published:
2024-11-10
Contact:
Yang ZHANG
About author:
ZENG Yu, born in 1999, M. S. candidate. His research interests include time series analysis, data mining.Supported by:
曾渝1,2, 张洋1,2,3(), 曾尚1,2, 付茂栗1,2,3, 何启学1,2, 曾林隆1,2
通讯作者:
张洋
作者简介:
曾渝(1999—),男,重庆人,硕士研究生,主要研究方向:时间序列分析、数据挖掘基金资助:
CLC Number:
Yu ZENG, Yang ZHANG, Shang ZENG, Maoli FU, Qixue HE, Linlong ZENG. Time series prediction algorithm based on multi-scale gated dilated convolutional network[J]. Journal of Computer Applications, 2024, 44(11): 3427-3434.
曾渝, 张洋, 曾尚, 付茂栗, 何启学, 曾林隆. 基于多尺度门控膨胀卷积网络的时间序列预测算法[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3427-3434.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023111583
数据集 | 输入长度 | 预测长度 | 本文模型 | LSTM | TCN | Informer | NLinear | PatchTST | Crossformer | TSMixer | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | |||
ETTm1 | 96 | 96 | 0.104 | 0.230 | 0.286 | 0.440 | 0.165 | 0.310 | 0.195 | 0.335 | 0.115 | 0.238 | 0.171 | 0.302 | 0.146 | 0.282 | 0.121 | 0.258 |
192 | 0.172 | 0.309 | 0.412 | 0.482 | 0.292 | 0.431 | 0.456 | 0.550 | 0.184 | 0.318 | 0.201 | 0.315 | 0.250 | 0.392 | 0.174 | 0.315 | ||
336 | 0.231 | 0.360 | 0.523 | 0.588 | 0.650 | 0.662 | 0.554 | 0.615 | 0.267 | 0.392 | 0.277 | 0.405 | 0.382 | 0.455 | 0.284 | 0.414 | ||
720 | 0.317 | 0.431 | 0.936 | 0.773 | 0.614 | 0.609 | 0.768 | 0.717 | 0.420 | 0.513 | 0.323 | 0.445 | 0.510 | 0.568 | 0.404 | 0.508 | ||
ETTh1 | 48 | 24 | 0.061 | 0.185 | 0.077 | 0.210 | 0.092 | 0.236 | 0.122 | 0.280 | 0.132 | 0.293 | 0.121 | 0.281 | 0.066 | 0.192 | 0.125 | 0.290 |
48 | 0.084 | 0.218 | 0.142 | 0.296 | 0.128 | 0.281 | 0.171 | 0.332 | 0.172 | 0.348 | 0.137 | 0.295 | 0.125 | 0.271 | 0.146 | 0.308 | ||
96 | 0.115 | 0.263 | 0.287 | 0.444 | 0.192 | 0.350 | 0.180 | 0.339 | 0.211 | 0.372 | 0.201 | 0.365 | 0.295 | 0.426 | 0.204 | 0.375 | ||
192 | 0.145 | 0.295 | 0.328 | 0.470 | 0.198 | 0.366 | 0.208 | 0.372 | 0.532 | 0.628 | 0.468 | 0.512 | 0.372 | 0.483 | 0.564 | 0.640 | ||
Weather | 144 | 72 | 0.062 | 0.178 | 0.125 | 0.257 | 0.127 | 0.279 | 0.099 | 0.240 | 0.068 | 0.189 | 0.062 | 0.186 | 0.064 | 0.187 | 0.069 | 0.195 |
144 | 0.099 | 0.234 | 0.138 | 0.278 | 0.142 | 0.298 | 0.131 | 0.275 | 0.098 | 0.238 | 0.099 | 0.238 | 0.127 | 0.270 | 0.101 | 0.234 | ||
288 | 0.161 | 0.296 | 0.224 | 0.356 | 0.218 | 0.352 | 0.186 | 0.332 | 0.161 | 0.297 | 0.169 | 0.315 | 0.163 | 0.312 | 0.181 | 0.299 | ||
432 | 0.180 | 0.313 | 0.273 | 0.380 | 0.262 | 0.403 | 0.238 | 0.367 | 0.214 | 0.333 | 0.194 | 0.325 | 0.229 | 0.355 | 0.209 | 0.335 | ||
ILI | 104 | 52 | 0.546 | 0.463 | 1.531 | 1.057 | 1.675 | 1.060 | 1.618 | 1.194 | 1.850 | 1.200 | 1.980 | 1.198 | 0.700 | 0.664 | 1.989 | 1.285 |
104 | 1.139 | 0.864 | 2.351 | 1.231 | 2.579 | 1.198 | 2.054 | 1.033 | 2.846 | 1.431 | 2.040 | 1.090 | 1.816 | 1.032 | 2.441 | 1.389 | ||
208 | 2.644 | 1.278 | 3.868 | 1.549 | 3.871 | 1.536 | 3.278 | 1.910 | 5.363 | 2.083 | 3.835 | 1.520 | 3.097 | 1.395 | 3.016 | 1.490 | ||
Electricity | 72 | 24 | 0.268 | 0.393 | 0.308 | 0.424 | 0.509 | 0.538 | 0.364 | 0.450 | 0.289 | 0.417 | 0.280 | 0.407 | 0.309 | 0.428 | 0.291 | 0.415 |
72 | 0.385 | 0.474 | 0.425 | 0.496 | 0.597 | 0.579 | 0.498 | 0.523 | 0.468 | 0.516 | 0.425 | 0.480 | 0.422 | 0.497 | 0.395 | 0.485 | ||
168 | 0.393 | 0.479 | 0.492 | 0.539 | 0.615 | 0.620 | 0.569 | 0.576 | 0.551 | 0.571 | 0.455 | 0.500 | 0.518 | 0.571 | 0.425 | 0.493 | ||
240 | 0.389 | 0.463 | 0.499 | 0.555 | 0.642 | 0.616 | 0.669 | 0.677 | 0.573 | 0.574 | 0.482 | 0.516 | 0.547 | 0.601 | 0.449 | 0.513 |
Tab. 1 Prediction results of different models on different datasets
数据集 | 输入长度 | 预测长度 | 本文模型 | LSTM | TCN | Informer | NLinear | PatchTST | Crossformer | TSMixer | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | |||
ETTm1 | 96 | 96 | 0.104 | 0.230 | 0.286 | 0.440 | 0.165 | 0.310 | 0.195 | 0.335 | 0.115 | 0.238 | 0.171 | 0.302 | 0.146 | 0.282 | 0.121 | 0.258 |
192 | 0.172 | 0.309 | 0.412 | 0.482 | 0.292 | 0.431 | 0.456 | 0.550 | 0.184 | 0.318 | 0.201 | 0.315 | 0.250 | 0.392 | 0.174 | 0.315 | ||
336 | 0.231 | 0.360 | 0.523 | 0.588 | 0.650 | 0.662 | 0.554 | 0.615 | 0.267 | 0.392 | 0.277 | 0.405 | 0.382 | 0.455 | 0.284 | 0.414 | ||
720 | 0.317 | 0.431 | 0.936 | 0.773 | 0.614 | 0.609 | 0.768 | 0.717 | 0.420 | 0.513 | 0.323 | 0.445 | 0.510 | 0.568 | 0.404 | 0.508 | ||
ETTh1 | 48 | 24 | 0.061 | 0.185 | 0.077 | 0.210 | 0.092 | 0.236 | 0.122 | 0.280 | 0.132 | 0.293 | 0.121 | 0.281 | 0.066 | 0.192 | 0.125 | 0.290 |
48 | 0.084 | 0.218 | 0.142 | 0.296 | 0.128 | 0.281 | 0.171 | 0.332 | 0.172 | 0.348 | 0.137 | 0.295 | 0.125 | 0.271 | 0.146 | 0.308 | ||
96 | 0.115 | 0.263 | 0.287 | 0.444 | 0.192 | 0.350 | 0.180 | 0.339 | 0.211 | 0.372 | 0.201 | 0.365 | 0.295 | 0.426 | 0.204 | 0.375 | ||
192 | 0.145 | 0.295 | 0.328 | 0.470 | 0.198 | 0.366 | 0.208 | 0.372 | 0.532 | 0.628 | 0.468 | 0.512 | 0.372 | 0.483 | 0.564 | 0.640 | ||
Weather | 144 | 72 | 0.062 | 0.178 | 0.125 | 0.257 | 0.127 | 0.279 | 0.099 | 0.240 | 0.068 | 0.189 | 0.062 | 0.186 | 0.064 | 0.187 | 0.069 | 0.195 |
144 | 0.099 | 0.234 | 0.138 | 0.278 | 0.142 | 0.298 | 0.131 | 0.275 | 0.098 | 0.238 | 0.099 | 0.238 | 0.127 | 0.270 | 0.101 | 0.234 | ||
288 | 0.161 | 0.296 | 0.224 | 0.356 | 0.218 | 0.352 | 0.186 | 0.332 | 0.161 | 0.297 | 0.169 | 0.315 | 0.163 | 0.312 | 0.181 | 0.299 | ||
432 | 0.180 | 0.313 | 0.273 | 0.380 | 0.262 | 0.403 | 0.238 | 0.367 | 0.214 | 0.333 | 0.194 | 0.325 | 0.229 | 0.355 | 0.209 | 0.335 | ||
ILI | 104 | 52 | 0.546 | 0.463 | 1.531 | 1.057 | 1.675 | 1.060 | 1.618 | 1.194 | 1.850 | 1.200 | 1.980 | 1.198 | 0.700 | 0.664 | 1.989 | 1.285 |
104 | 1.139 | 0.864 | 2.351 | 1.231 | 2.579 | 1.198 | 2.054 | 1.033 | 2.846 | 1.431 | 2.040 | 1.090 | 1.816 | 1.032 | 2.441 | 1.389 | ||
208 | 2.644 | 1.278 | 3.868 | 1.549 | 3.871 | 1.536 | 3.278 | 1.910 | 5.363 | 2.083 | 3.835 | 1.520 | 3.097 | 1.395 | 3.016 | 1.490 | ||
Electricity | 72 | 24 | 0.268 | 0.393 | 0.308 | 0.424 | 0.509 | 0.538 | 0.364 | 0.450 | 0.289 | 0.417 | 0.280 | 0.407 | 0.309 | 0.428 | 0.291 | 0.415 |
72 | 0.385 | 0.474 | 0.425 | 0.496 | 0.597 | 0.579 | 0.498 | 0.523 | 0.468 | 0.516 | 0.425 | 0.480 | 0.422 | 0.497 | 0.395 | 0.485 | ||
168 | 0.393 | 0.479 | 0.492 | 0.539 | 0.615 | 0.620 | 0.569 | 0.576 | 0.551 | 0.571 | 0.455 | 0.500 | 0.518 | 0.571 | 0.425 | 0.493 | ||
240 | 0.389 | 0.463 | 0.499 | 0.555 | 0.642 | 0.616 | 0.669 | 0.677 | 0.573 | 0.574 | 0.482 | 0.516 | 0.547 | 0.601 | 0.449 | 0.513 |
数据集 | 输入长度 | MSE | 数据集 | 输入长度 | MSE | 数据集 | 输入长度 | MSE |
---|---|---|---|---|---|---|---|---|
ETTm1 | 24 | 0.130 | Weather | 24 | 0.144 | Electricity | 0.613 | |
48 | 0.112 | 72 | 0.122 | 72 | 0.252 | |||
0.109 | 0.110 | 144 | 0.270 | |||||
192 | 0.127 | 288 | 0.117 | 168 | 0.427 | |||
336 | 0.113 | 432 | 0.141 | 240 | 0.402 |
Tab. 2 Prediction results with different input lengths L
数据集 | 输入长度 | MSE | 数据集 | 输入长度 | MSE | 数据集 | 输入长度 | MSE |
---|---|---|---|---|---|---|---|---|
ETTm1 | 24 | 0.130 | Weather | 24 | 0.144 | Electricity | 0.613 | |
48 | 0.112 | 72 | 0.122 | 72 | 0.252 | |||
0.109 | 0.110 | 144 | 0.270 | |||||
192 | 0.127 | 288 | 0.117 | 168 | 0.427 | |||
336 | 0.113 | 432 | 0.141 | 240 | 0.402 |
模型 | MSE | 模型 | MSE |
---|---|---|---|
本文模型 | 0.108 | Model-2 | 0.112 |
Model-1 | 0.127 | Model-3 | 0.120 |
Tab. 3 Results of ablation experiments
模型 | MSE | 模型 | MSE |
---|---|---|---|
本文模型 | 0.108 | Model-2 | 0.112 |
Model-1 | 0.127 | Model-3 | 0.120 |
1 | LI J, YANG C, LI Y, et al. A context-aware enhanced GRU network with feature-temporal attention for prediction of silicon content in hot metal[J]. IEEE Transactions on Industrial Informatics, 2022, 18(10): 6631-6641. |
2 | BI K, XIE L, ZHANG H, et al. Accurate medium-range global weather forecasting with 3D neural networks[J]. Nature, 2023, 619(7970): 533-538. |
3 | ZHOU X, PAN Z, HU G, et al. Stock market prediction on high-frequency data using generative adversarial nets[J]. Mathematical Problems in Engineering, 2018, 2018: No.4907423. |
4 | 李志强,张香燕,李鸿飞,等.基于GM-ARIMA模型的遥测数据中长期预测[J].计算机仿真,2023,40(5):106-111. |
LI Z Q, ZHANG X Y, LI H F, et al. Long-term prediction method of telemetry data based on GM-ARIMA model[J]. Computer Simulation, 2023, 40(5):106-111. | |
5 | 徐耀松,王德兴.基于加权灰色关联投影的Bagging-Blending多模型融合短期电力负荷预测[J].信息与控制,2022,51(2):188-200. |
XU Y S, WANG D X. Bagging-Blending multi-model fusion short-term power load forecasting based on weighted gray relational projection[J]. Information and Control, 2022, 51(2):188-200. | |
6 | BAI S, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. (2018-04-19) [2024-01-15].. |
7 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6000-6010. |
8 | HAN L, YE H J, ZHAN D C. The capacity and robustness trade-off: revisiting the channel independent strategy for multivariate time series forecasting[J]. IEEE Transactions on Knowledge and Data Engineering, 2024(Early Access): 1-14. |
9 | 毛远宏,孙琛琛,徐鲁豫,等.基于深度学习的时间序列预测方法综述[J].微电子学与计算机,2023,40(4):8-17. |
MAO Y H, SUN C C, XU L Y, et al. A survey of time series forecasting methods based on deep learning[J]. Microelectronics and Computer, 2023, 40(4):8-17. | |
10 | DU D, SU B, WEI Z. Preformer: predictive Transformer with multi-scale segment-wise correlations for long-term time series forecasting[C]// Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5. |
11 | LIU M, ZENG A, CHEN M, et al. SCINet: time series modeling and forecasting with sample convolution and interaction[C/OL]// Proceedings of the 36th International Conference on Neural Information Processing Systems. San Diego, CA: NeurIPS, 2022 [2024-01-15].. |
12 | ZHOU H, ZHANG S, PENG J, et al. Informer: beyond efficient Transformer for long sequence time-series forecasting[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 11106-11115. |
13 | ZENG A, CHEN M, ZHANG L, et al. Are Transformers effective for time series forecasting?[C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2023: 11121-11128. |
14 | NIE Y, NGUYEN N H, SINTHONG P, et al. A time series is worth 64 words: long-term forecasting with Transformers[EB/OL]. [2024-01-10].. |
15 | ZHANG Y, YAN J. Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting[EB/OL]. [2023-12-16].. |
16 | CHEN S A, LI C L, YODER N C, et al. TSMixer: an all-MLP architecture for time series forecasting[EB/OL]. [2024-01-19].. |
17 | KIM T, KIM J, TAE Y, et al. Reversible instance normalization for accurate time-series forecasting against distribution shift[EB/OL]. [2024-03-21].. |
18 | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. [2023-12-29].. |
19 | ZHOU W, XU C, GE T, et al. BERT loses patience: fast and robust inference with early exit[C/OL]// Proceedings of the 34th International Conference on Neural Information Processing Systems. San Diego, CA: NeurIPS, 2020 [2024-01-15].. |
[1] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[2] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[3] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[4] | Zhigang XU, Chuang ZHANG. Multi-level color restoration of mural image based on gated positional encoding [J]. Journal of Computer Applications, 2024, 44(9): 2931-2937. |
[5] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[6] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[7] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[8] | Kaili DENG, Weibo WEI, Zhenkuan PAN. Industrial defect detection method with improved masked autoencoder [J]. Journal of Computer Applications, 2024, 44(8): 2595-2603. |
[9] | Chenqian LI, Jun LIU. Ultrasound carotid plaque segmentation method based on semi-supervision and multi-scale cascaded attention [J]. Journal of Computer Applications, 2024, 44(8): 2604-2610. |
[10] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[11] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. |
[12] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[13] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. |
[14] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[15] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||