| 1 | BAO Y K, WANG W, ZOU H. SVR-based method forecasting intermittent demand for service parts inventories[C]// Proceedings of the 2005 International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, LNCS 3642. Berlin: Springer, 2005: 604-613. | 
																													
																							| 2 | CROSTON J D. Forecasting and stock control for intermittent demands[J]. Journal of the Operational Research Society, 1972, 23(3): 289-303.  10.1057/jors.1972.50 | 
																													
																							| 3 | CHEN Y, ZHAO H, YU L. Demand forecasting in automotive aftermarket based on ARMA model[C]// Proceedings of the 2010 International Conference on Management and Service Science. Piscataway: IEEE, 2010: 1-4.  10.1109/icmss.2010.5577867 | 
																													
																							| 4 | KARMY J P, MALDONADO S. Hierarchical time series forecasting via support vector regression in the European travel retail industry[J]. Expert Systems with Applications, 2019, 137: 59-73.  10.1016/j.eswa.2019.06.060 | 
																													
																							| 5 | WANG Y, GUO Y K. Forecasting method of stock market volatility in time series data based on mixed model of ARIMA and XGBoost[J]. China Communications, 2020, 17(3): 205-221.  10.23919/jcc.2020.03.017 | 
																													
																							| 6 | VAN STEENBERGEN R M, MES M R K. Forecasting demand profiles of new products[J]. Decision Support Systems, 2020, 139: No.113401.  10.1016/j.dss.2020.113401 | 
																													
																							| 7 | XING R R, SHI X L. A BP-SVM combined model for intermittent spare parts demand prediction[C]// Proceedings of the 2019 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE, 2019: 1085-1090.  10.1109/smc.2019.8914609 | 
																													
																							| 8 | ABBASIMEHR H, SHABANI M, YOUSEFI M. An optimized model using LSTM network for demand forecasting[J]. Computers and Industrial Engineering, 2020, 143: No.106435.  10.1016/j.cie.2020.106435 | 
																													
																							| 9 | CAO J S, WANG J H. Stock price forecasting model based on modified convolution neural network and financial time series analysis[J]. International Journal of Communication Systems, 2019, 32(12): No.e3987.  10.1002/dac.3987 | 
																													
																							| 10 | MOR R S, NAGAR J, BHARDWAJ A. A comparative study of forecasting methods for sporadic demand in an auto service station[J]. International Journal of Business Forecasting and Marketing Intelligence, 2019, 5(1): 56-70.  10.1504/ijbfmi.2019.099009 | 
																													
																							| 11 | BOUKHTOUTA A, JENTSCH P. Support vector machine for demand forecasting of Canadian Armed Forces spare parts[C]// Proceedings of the 6th International Symposium on Computational and Business Intelligence. Piscataway: IEEE, 2018: 59-64.  10.1109/iscbi.2018.00021 | 
																													
																							| 12 | FU W H, CHEN C F, LIN Z H. A hybrid forecasting framework with neural network and time-series method for intermittent demand in semiconductor supply chain[C]// Proceedings of the 2018 IFIP International Conference on Advances in Production Management Systems, IFIPAICT 536. Cham: Springer, 2018: 65-72. | 
																													
																							| 13 | TEUNTER R H, DUNCAN L. Forecasting intermittent demand: a comparative study[J]. Journal of the Operational Research Society, 2009, 60(3): 321-329.  10.1057/palgrave.jors.2602569 | 
																													
																							| 14 | XU S J, CHAN H K, CH’NG E, et al. A comparison of forecasting methods for medical device demand using trend-based clustering scheme[J]. Journal of Data, Information and Management, 2020, 2(2): 85-94.  10.1007/s42488-020-00026-y | 
																													
																							| 15 | BAO Y K, WANG W, ZHANG J L. Forecasting intermittent demand by SVMs regression[C]// Proceedings of the 2004 IEEE International Conference on Systems, Man and Cybernetics. Piscataway: IEEE, 2004: 461-466.  10.1109/icsmc.2004.1400628 | 
																													
																							| 16 | SHI Q Q, YIN J M, CAI J J, et al. Block Hankel tensor ARIMA for multiple short time series forecasting[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 5758-5766.  10.1609/aaai.v34i04.6032 | 
																													
																							| 17 | 陈美云. 时间序列聚类分析中几种算法的研究及应用[D]. 徐州:中国矿业大学, 2019:7-8. | 
																													
																							|  | CHEN M Y. Comparing clustering algorithm using time-series data[D]. Xuzhou: China University of Mining and Technology, 2019: 7-8. | 
																													
																							| 18 | 毛文涛,赵胜杰,张俊娜. 基于主曲线的多输入多输出支持向量机算法[J]. 计算机应用, 2013, 33(5): 1281-1284, 1293.  10.3724/sp.j.1087.2013.01281 | 
																													
																							|  | MAO W T, ZHAO S J, ZHANG J N. Multi-input-multi-output support vector machine based on principal curve[J]. Journal of Computer Applications, 2013, 33(5): 1281-1284, 1293.  10.3724/sp.j.1087.2013.01281 | 
																													
																							| 19 | RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062): 1518-1524.  10.1126/science.1205438 | 
																													
																							| 20 | TÜRKMEN A C, WANG Y Y, JANUSCHOWSKI T. Intermittent demand forecasting with deep renewal processes[EB/OL]. (2019-11-23) [2021-07-08]..  10.1371/journal.pone.0259764 | 
																													
																							| 21 | MAO W T, ZHAO S J, MU X X, et al. Multi-dimensional extreme learning machine[J]. Neurocomputing, 2015, 149(Pt A):160-170.  10.1016/j.neucom.2014.02.073 |