Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (2): 646-654.DOI: 10.11772/j.issn.1001-9081.2021041023
• Frontier and comprehensive applications • Previous Articles Next Articles
Min WANG1(), Tingting FENG1, Fan MIN2, Hongming TANG3, Jianping YAN3, Jijia LIAO3
Received:
2021-06-15
Revised:
2021-07-05
Accepted:
2021-07-09
Online:
2022-02-11
Published:
2022-02-10
Contact:
Min WANG
About author:
WANG Min, born in 1980, M. S., professor. Her research interests include data mining, active learning.Supported by:
汪敏1(), 冯婷婷1, 闵帆2, 唐洪明3, 闫建平3, 廖纪佳3
通讯作者:
汪敏
作者简介:
汪敏(1980—),女,湖南邵阳人,教授,硕士,CCF会员,主要研究方向:数据挖掘、主动学习;基金资助:
CLC Number:
Min WANG, Tingting FENG, Fan MIN, Hongming TANG, Jianping YAN, Jijia LIAO. Multi-label active learning algorithm for shale gas reservoir prediction[J]. Journal of Computer Applications, 2022, 42(2): 646-654.
汪敏, 冯婷婷, 闵帆, 唐洪明, 闫建平, 廖纪佳. 页岩气储层预测的多标签主动学习算法[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 646-654.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021041023
数据集 | 样本数 | 标签数 | 属性数 |
---|---|---|---|
Arts | 5 000 | 26 | 462 |
Business | 5 000 | 30 | 438 |
Computers | 5 000 | 33 | 681 |
Education | 5 000 | 33 | 550 |
Entertainment | 5 000 | 21 | 640 |
Health | 5 000 | 32 | 612 |
Recreation | 5 000 | 22 | 606 |
Reference | 5 000 | 33 | 793 |
Science | 5 000 | 40 | 743 |
Social | 5 000 | 39 | 1 047 |
Society | 5 000 | 27 | 636 |
Tab. 1 Yahoo datasets
数据集 | 样本数 | 标签数 | 属性数 |
---|---|---|---|
Arts | 5 000 | 26 | 462 |
Business | 5 000 | 30 | 438 |
Computers | 5 000 | 33 | 681 |
Education | 5 000 | 33 | 550 |
Entertainment | 5 000 | 21 | 640 |
Health | 5 000 | 32 | 612 |
Recreation | 5 000 | 22 | 606 |
Reference | 5 000 | 33 | 793 |
Science | 5 000 | 40 | 743 |
Social | 5 000 | 39 | 1 047 |
Society | 5 000 | 27 | 636 |
算法 | AveragePrecision | Coverage | OneError | RankingLoss |
---|---|---|---|---|
MAML | 1.0909 | 3.000 0 | 1.6364 | 2.727 3 |
ML-KNN | 2.818 2 | 1.0000 | 3.136 4 | 1.0909 |
BP-MLL | 3.545 5 | 2.000 0 | 3.227 3 | 2.181 8 |
GLOCAL | 2.545 5 | 4.000 0 | 2.000 0 | 4.000 0 |
Tab. 2 Average performance ranking of different multi-label learning algorithms on Yahoo datasets
算法 | AveragePrecision | Coverage | OneError | RankingLoss |
---|---|---|---|---|
MAML | 1.0909 | 3.000 0 | 1.6364 | 2.727 3 |
ML-KNN | 2.818 2 | 1.0000 | 3.136 4 | 1.0909 |
BP-MLL | 3.545 5 | 2.000 0 | 3.227 3 | 2.181 8 |
GLOCAL | 2.545 5 | 4.000 0 | 2.000 0 | 4.000 0 |
数据集 | 算法 | 评价指标 | |||
---|---|---|---|---|---|
AveragePrecision | Coverage | OneError | RankingLoss | ||
Arts | MAML | 0.503 0±0.000 0 | 7.053 2±0.000 0 | 0.617 1±0.000 0 | 0.194 5±0.000 0 |
ML-KNN* | 0.458 6±0.000 0 | 6.038 2±0.000 4 | 0.682 0±0.000 0 | 0.174 5±0.000 0 | |
BP-MLL* | 0.431 6±0.000 0 | 6.243 1±0.008 3 | 0.751 8±0.000 0 | 0.181 6±0.000 0 | |
GLOCAL* | 0.464 6±0.000 0 | 9.000 9±0.000 5 | 0.629 6±0.000 0 | 0.268 6±0.000 0 | |
QUIRE** | 0.511 1±0.000 0 | 6.864 8±0.012 9 | 0.605 8±0.000 1 | 0.190 3±0.000 0 | |
Business | MAML | 0.855 8±0.000 0 | 3.374 4±0.000 0 | 0.137 4±0.000 0 | 0.064 3±0.000 0 |
ML-KNN* | 0.854 9±0.000 0 | 2.732 4±0.000 8 | 0.136 9±0.000 0 | 0.051 1±0.000 0 | |
BP-MLL* | 0.854 1±0.000 0 | 2.900 8±0.002 9 | 0.132 4±0.000 0 | 0.053 1±0.000 0 | |
GLOCAL* | 0.788 5±0.000 0 | 4.917 0±0.009 1 | 0.204 4±0.000 0 | 0.100 6±0.000 0 | |
QUIRE** | 0.866 5±0.000 0 | 3.191 0±0.006 6 | 0.120 2±0.000 0 | 0.058 7±0.000 0 | |
Computers | MAML | 0.632 5±0.000 0 | 6.074 5±0.000 0 | 0.435 0±0.000 0 | 0.134 0±0.000 0 |
ML-KNN* | 0.599 7±0.000 0 | 4.723 1±0.004 7 | 0.477 3±0.000 0 | 0.103 5±0.000 0 | |
BP-MLL* | 0.596 6±0.000 0 | 4.906 4±0.002 1 | 0.477 3±0.000 0 | 0.101 9±0.000 0 | |
GLOCAL* | 0.566 9±0.000 0 | 8.517 7±0.004 1 | 0.483 3±0.000 0 | 0.204 8±0.000 0 | |
QUIRE** | 0.630 9±0.000 1 | 6.015 8±0.042 8 | 0.431 3±0.000 1 | 0.131 8±0.000 0 | |
Education | MAML | 0.510 0±0.000 0 | 6.149 0±0.000 0 | 0.624 6±0.000 0 | 0.147 0±0.000 0 |
ML-KNN* | 0.504 5±0.000 5 | 4.694 1±0.000 3 | 0.637 1±0.001 7 | 0.114 6±0.000 0 | |
BP-MLL* | 0.472 9±0.000 0 | 4.791 2±0.000 0 | 0.685 8±0.000 0 | 0.114 9±0.000 0 | |
GLOCAL* | 0.484 4±0.000 0 | 9.906 2±0.001 4 | 0.622 7±0.000 0 | 0.237 4±0.000 0 | |
QUIRE** | 0.509 3±0.000 2 | 6.358 8±0.099 2 | 0.627 2±0.000 4 | 0.150 7±0.000 1 | |
Entertainment | MAML | 0.573 5±0.000 0 | 4.103 3±0.000 0 | 0.560 0±0.000 0 | 0.153 8±0.000 0 |
ML-KNN* | 0.544 7±0.000 0 | 3.635 9±0.003 1 | 0.600 9±0.000 1 | 0.137 1±0.000 0 | |
BP-MLL* | 0.472 7±0.000 0 | 4.097 7±0.001 3 | 0.990 5±0.000 0 | 0.156 2±0.000 0 | |
GLOCAL* | 0.569 2±0.000 0 | 5.664 5±0.000 0 | 0.524 0±0.000 0 | 0.217 9±0.000 0 | |
QUIRE** | 0.549 2±0.000 3 | 4.586 1±0.082 9 | 0.578 3±0.000 6 | 0.176 7±0.000 2 | |
Health | MAML | 0.699 5±0.000 0 | 4.689 7±0.000 0 | 0.373 8±0.000 0 | 0.085 7±0.000 0 |
ML-KNN* | 0.642 9±0.000 0 | 3.776 7±0.000 3 | 0.452 5±0.000 0 | 0.075 6±0.000 0 | |
BP-MLL* | 0.609 8±0.000 0 | 4.207 5±0.003 1 | 0.493 9±0.000 0 | 0.085 8±0.000 0 | |
GLOCAL* | 0.648 4±0.000 0 | 7.040 1±0.000 2 | 0.413 8±0.000 0 | 0.146 5±0.000 0 | |
QUIRE** | 0.680 7±0.000 1 | 4.701 1±0.059 7 | 0.398 4±0.000 2 | 0.089 4±0.000 0 | |
Recreation | MAML | 0.481 3±0.000 0 | 5.740 8±0.000 0 | 0.651 0±0.000 0 | 0.216 7±0.000 0 |
ML-KNN* | 0.427 5±0.000 0 | 5.099 4±0.009 4 | 0.736 6±0.000 1 | 0.200 8±0.000 0 | |
BP-MLL* | 0.367 3±0.000 0 | 5.415 9±0.000 5 | 0.825 4±0.000 1 | 0.219 0±0.000 0 | |
GLOCAL* | 0.488 4±0.000 0 | 6.811 6±0.001 0 | 0.620 0±0.000 0 | 0.261 6±0.000 0 | |
QUIRE** | 0.492 1±0.000 2 | 5.708 4±0.024 3 | 0.641 1±0.000 3 | 0.213 0±0.000 0 | |
Reference | MAML | 0.621 3±0.000 0 | 5.159 6±0.001 4 | 0.467 2±0.000 0 | 0.134 2±0.000 0 |
ML-KNN* | 0.574 4±0.000 0 | 3.780 3±0.005 7 | 0.553 3±0.000 0 | 0.102 0±0.000 0 | |
BP-MLL* | 0.561 1±0.000 0 | 4.212 7±0.000 5 | 0.533 0±0.000 0 | 0.112 5±0.000 0 | |
GLOCAL* | 0.589 0±0.000 0 | 6.885 5±0.013 1 | 0.491 1±0.000 0 | 0.182 5±0.000 0 | |
QUIRE** | 0.568 0±0.000 2 | 5.776 6±0.512 2 | 0.525 6±0.000 1 | 0.160 4±0.000 7 | |
Science | MAML | 0.435 7±0.000 0 | 9.326 5±0.000 0 | 0.679 8±0.000 0 | 0.185 6±0.000 0 |
ML-KNN* | 0.366 7±0.000 2 | 7.635 5±0.002 2 | 0.799 6±0.000 4 | 0.158 7±0.000 0 | |
BP-MLL* | 0.393 2±0.000 0 | 7.955 0±0.001 3 | 0.763 7±0.000 0 | 0.159 4±0.000 0 | |
GLOCAL* | 0.428 1±0.000 0 | 12.310 4±0.000 6 | 0.669 1±0.000 0 | 0.254 8±0.000 0 | |
QUIRE** | 0.423 4±0.000 6 | 9.617 3±0.131 1 | 0.702 5±0.001 2 | 0.192 4±0.000 1 | |
Social | MAML | 0.701 3±0.000 0 | 4.718 3±0.000 0 | 0.386 3±0.000 0 | 0.092 7±0.000 0 |
ML-KNN* | 0.668 3±0.000 0 | 3.947 6±0.003 3 | 0.430 6±0.000 0 | 0.080 6±0.000 0 | |
BP-MLL* | 0.590 0±0.000 0 | 4.259 6±0.000 3 | 0.575 2±0.000 0 | 0.084 3±0.000 0 | |
GLOCAL* | 0.682 0±0.000 0 | 6.850 7±0.000 4 | 0.378 0±0.000 0 | 0.138 6±0.000 0 | |
QUIRE** | 0.689 6±0.000 0 | 4.921 4±0.064 9 | 0.395 7±0.000 1 | 0.105 4±0.000 1 | |
Society | MAML | 0.548 7±0.000 0 | 7.931 3±0.000 0 | 0.484 0±0.000 0 | 0.204 5±0.000 0 |
ML-KNN* | 0.529 8±0.000 1 | 6.159 6±0.000 6 | 0.558 1±0.000 4 | 0.160 9±0.000 0 | |
BP-MLL* | 0.542 4±0.000 0 | 6.345 8±0.000 9 | 0.502 0±0.000 0 | 0.163 6±0.000 0 | |
GLOCAL* | 0.512 1±0.000 0 | 9.348 7±0.000 8 | 0.533 8±0.000 1 | 0.253 2±0.000 0 | |
QUIRE** | 0.545 3±0.000 1 | 7.731 6±0.023 6 | 0.492 1±0.000 2 | 0.198 6±0.000 0 |
Tab. 3 Comparison of four evaluation indicators between MAML and comparison algorithms on Yahoo datasets
数据集 | 算法 | 评价指标 | |||
---|---|---|---|---|---|
AveragePrecision | Coverage | OneError | RankingLoss | ||
Arts | MAML | 0.503 0±0.000 0 | 7.053 2±0.000 0 | 0.617 1±0.000 0 | 0.194 5±0.000 0 |
ML-KNN* | 0.458 6±0.000 0 | 6.038 2±0.000 4 | 0.682 0±0.000 0 | 0.174 5±0.000 0 | |
BP-MLL* | 0.431 6±0.000 0 | 6.243 1±0.008 3 | 0.751 8±0.000 0 | 0.181 6±0.000 0 | |
GLOCAL* | 0.464 6±0.000 0 | 9.000 9±0.000 5 | 0.629 6±0.000 0 | 0.268 6±0.000 0 | |
QUIRE** | 0.511 1±0.000 0 | 6.864 8±0.012 9 | 0.605 8±0.000 1 | 0.190 3±0.000 0 | |
Business | MAML | 0.855 8±0.000 0 | 3.374 4±0.000 0 | 0.137 4±0.000 0 | 0.064 3±0.000 0 |
ML-KNN* | 0.854 9±0.000 0 | 2.732 4±0.000 8 | 0.136 9±0.000 0 | 0.051 1±0.000 0 | |
BP-MLL* | 0.854 1±0.000 0 | 2.900 8±0.002 9 | 0.132 4±0.000 0 | 0.053 1±0.000 0 | |
GLOCAL* | 0.788 5±0.000 0 | 4.917 0±0.009 1 | 0.204 4±0.000 0 | 0.100 6±0.000 0 | |
QUIRE** | 0.866 5±0.000 0 | 3.191 0±0.006 6 | 0.120 2±0.000 0 | 0.058 7±0.000 0 | |
Computers | MAML | 0.632 5±0.000 0 | 6.074 5±0.000 0 | 0.435 0±0.000 0 | 0.134 0±0.000 0 |
ML-KNN* | 0.599 7±0.000 0 | 4.723 1±0.004 7 | 0.477 3±0.000 0 | 0.103 5±0.000 0 | |
BP-MLL* | 0.596 6±0.000 0 | 4.906 4±0.002 1 | 0.477 3±0.000 0 | 0.101 9±0.000 0 | |
GLOCAL* | 0.566 9±0.000 0 | 8.517 7±0.004 1 | 0.483 3±0.000 0 | 0.204 8±0.000 0 | |
QUIRE** | 0.630 9±0.000 1 | 6.015 8±0.042 8 | 0.431 3±0.000 1 | 0.131 8±0.000 0 | |
Education | MAML | 0.510 0±0.000 0 | 6.149 0±0.000 0 | 0.624 6±0.000 0 | 0.147 0±0.000 0 |
ML-KNN* | 0.504 5±0.000 5 | 4.694 1±0.000 3 | 0.637 1±0.001 7 | 0.114 6±0.000 0 | |
BP-MLL* | 0.472 9±0.000 0 | 4.791 2±0.000 0 | 0.685 8±0.000 0 | 0.114 9±0.000 0 | |
GLOCAL* | 0.484 4±0.000 0 | 9.906 2±0.001 4 | 0.622 7±0.000 0 | 0.237 4±0.000 0 | |
QUIRE** | 0.509 3±0.000 2 | 6.358 8±0.099 2 | 0.627 2±0.000 4 | 0.150 7±0.000 1 | |
Entertainment | MAML | 0.573 5±0.000 0 | 4.103 3±0.000 0 | 0.560 0±0.000 0 | 0.153 8±0.000 0 |
ML-KNN* | 0.544 7±0.000 0 | 3.635 9±0.003 1 | 0.600 9±0.000 1 | 0.137 1±0.000 0 | |
BP-MLL* | 0.472 7±0.000 0 | 4.097 7±0.001 3 | 0.990 5±0.000 0 | 0.156 2±0.000 0 | |
GLOCAL* | 0.569 2±0.000 0 | 5.664 5±0.000 0 | 0.524 0±0.000 0 | 0.217 9±0.000 0 | |
QUIRE** | 0.549 2±0.000 3 | 4.586 1±0.082 9 | 0.578 3±0.000 6 | 0.176 7±0.000 2 | |
Health | MAML | 0.699 5±0.000 0 | 4.689 7±0.000 0 | 0.373 8±0.000 0 | 0.085 7±0.000 0 |
ML-KNN* | 0.642 9±0.000 0 | 3.776 7±0.000 3 | 0.452 5±0.000 0 | 0.075 6±0.000 0 | |
BP-MLL* | 0.609 8±0.000 0 | 4.207 5±0.003 1 | 0.493 9±0.000 0 | 0.085 8±0.000 0 | |
GLOCAL* | 0.648 4±0.000 0 | 7.040 1±0.000 2 | 0.413 8±0.000 0 | 0.146 5±0.000 0 | |
QUIRE** | 0.680 7±0.000 1 | 4.701 1±0.059 7 | 0.398 4±0.000 2 | 0.089 4±0.000 0 | |
Recreation | MAML | 0.481 3±0.000 0 | 5.740 8±0.000 0 | 0.651 0±0.000 0 | 0.216 7±0.000 0 |
ML-KNN* | 0.427 5±0.000 0 | 5.099 4±0.009 4 | 0.736 6±0.000 1 | 0.200 8±0.000 0 | |
BP-MLL* | 0.367 3±0.000 0 | 5.415 9±0.000 5 | 0.825 4±0.000 1 | 0.219 0±0.000 0 | |
GLOCAL* | 0.488 4±0.000 0 | 6.811 6±0.001 0 | 0.620 0±0.000 0 | 0.261 6±0.000 0 | |
QUIRE** | 0.492 1±0.000 2 | 5.708 4±0.024 3 | 0.641 1±0.000 3 | 0.213 0±0.000 0 | |
Reference | MAML | 0.621 3±0.000 0 | 5.159 6±0.001 4 | 0.467 2±0.000 0 | 0.134 2±0.000 0 |
ML-KNN* | 0.574 4±0.000 0 | 3.780 3±0.005 7 | 0.553 3±0.000 0 | 0.102 0±0.000 0 | |
BP-MLL* | 0.561 1±0.000 0 | 4.212 7±0.000 5 | 0.533 0±0.000 0 | 0.112 5±0.000 0 | |
GLOCAL* | 0.589 0±0.000 0 | 6.885 5±0.013 1 | 0.491 1±0.000 0 | 0.182 5±0.000 0 | |
QUIRE** | 0.568 0±0.000 2 | 5.776 6±0.512 2 | 0.525 6±0.000 1 | 0.160 4±0.000 7 | |
Science | MAML | 0.435 7±0.000 0 | 9.326 5±0.000 0 | 0.679 8±0.000 0 | 0.185 6±0.000 0 |
ML-KNN* | 0.366 7±0.000 2 | 7.635 5±0.002 2 | 0.799 6±0.000 4 | 0.158 7±0.000 0 | |
BP-MLL* | 0.393 2±0.000 0 | 7.955 0±0.001 3 | 0.763 7±0.000 0 | 0.159 4±0.000 0 | |
GLOCAL* | 0.428 1±0.000 0 | 12.310 4±0.000 6 | 0.669 1±0.000 0 | 0.254 8±0.000 0 | |
QUIRE** | 0.423 4±0.000 6 | 9.617 3±0.131 1 | 0.702 5±0.001 2 | 0.192 4±0.000 1 | |
Social | MAML | 0.701 3±0.000 0 | 4.718 3±0.000 0 | 0.386 3±0.000 0 | 0.092 7±0.000 0 |
ML-KNN* | 0.668 3±0.000 0 | 3.947 6±0.003 3 | 0.430 6±0.000 0 | 0.080 6±0.000 0 | |
BP-MLL* | 0.590 0±0.000 0 | 4.259 6±0.000 3 | 0.575 2±0.000 0 | 0.084 3±0.000 0 | |
GLOCAL* | 0.682 0±0.000 0 | 6.850 7±0.000 4 | 0.378 0±0.000 0 | 0.138 6±0.000 0 | |
QUIRE** | 0.689 6±0.000 0 | 4.921 4±0.064 9 | 0.395 7±0.000 1 | 0.105 4±0.000 1 | |
Society | MAML | 0.548 7±0.000 0 | 7.931 3±0.000 0 | 0.484 0±0.000 0 | 0.204 5±0.000 0 |
ML-KNN* | 0.529 8±0.000 1 | 6.159 6±0.000 6 | 0.558 1±0.000 4 | 0.160 9±0.000 0 | |
BP-MLL* | 0.542 4±0.000 0 | 6.345 8±0.000 9 | 0.502 0±0.000 0 | 0.163 6±0.000 0 | |
GLOCAL* | 0.512 1±0.000 0 | 9.348 7±0.000 8 | 0.533 8±0.000 1 | 0.253 2±0.000 0 | |
QUIRE** | 0.545 3±0.000 1 | 7.731 6±0.023 6 | 0.492 1±0.000 2 | 0.198 6±0.000 0 |
数据集 | 样本数 | 标签数 | 属性数 |
---|---|---|---|
Well_1 | 367 | 4 | 21 |
Well_2 | 786 | 4 | 21 |
Well_3 | 1 047 | 4 | 21 |
Well_4 | 1 309 | 4 | 21 |
Tab. 4 Well logging datasets
数据集 | 样本数 | 标签数 | 属性数 |
---|---|---|---|
Well_1 | 367 | 4 | 21 |
Well_2 | 786 | 4 | 21 |
Well_3 | 1 047 | 4 | 21 |
Well_4 | 1 309 | 4 | 21 |
算法 | AveragePrecision | Coverage | RankingLoss | Accuracy |
---|---|---|---|---|
MAML | 1.500 0 | 4.000 0 | 2.500 0 | 1.000 0 |
ML-KNN | 2.000 0 | 1.000 0 | 1.250 0 | 2.000 0 |
BP-MLL | 3.750 0 | 2.875 0 | 3.750 0 | 3.500 0 |
GLOCAL | 2.750 0 | 2.125 0 | 2.500 0 | 3.500 0 |
Tab. 5 Average performance ranking of different multi-label learning algorithms on well logging datasets
算法 | AveragePrecision | Coverage | RankingLoss | Accuracy |
---|---|---|---|---|
MAML | 1.500 0 | 4.000 0 | 2.500 0 | 1.000 0 |
ML-KNN | 2.000 0 | 1.000 0 | 1.250 0 | 2.000 0 |
BP-MLL | 3.750 0 | 2.875 0 | 3.750 0 | 3.500 0 |
GLOCAL | 2.750 0 | 2.125 0 | 2.500 0 | 3.500 0 |
数据集 | 算法 | 评价指标 | |||
---|---|---|---|---|---|
AveragePrecision | Coverage | RankingLoss | Accuracy | ||
Well_1 | MAML | 0.990 9±0.000 0 | 1.267 8±0.000 04 | 0.035 3±0.000 1 | 0.666 7±0.000 4 |
ML-KNN* | 0.987 9±0.000 0 | 0.694 0±0.000 4 | 0.003 2±0.000 0 | 0.218 6±0.000 0 | |
BP-MLL* | 0.988 5±0.000 0 | 0.748 6±0.008 3 | 0.025 0±0.000 0 | 0.021 9±0.000 0 | |
GLOCAL* | 0.989 9±0.000 0 | 0.748 6±0.000 5 | 0.020 7±0.000 0 | 0.021 9±0.000 0 | |
QUIRE** | 0.997 8±0.000 0 | 0.637 0±0.001 6 | 0.006 8±0.000 0 | 0.147 0±0.000 0 | |
Well_2 | MAML | 0.996 4±0.000 0 | 1.328 2±0.000 3 | 0.014 4±0.000 1 | 0.679 4±0.000 2 |
ML-KNN* | 0.994 1±0.000 0 | 0.746 3±0.000 2 | 0.015 1±0.000 0 | 0.265 6±0.000 4 | |
BP-MLL* | 0.987 7±0.000 0 | 0.786 3±0.000 1 | 0.031 2±0.000 0 | 0.017 3±0.000 0 | |
GLOCAL* | 0.991 9±0.000 0 | 0.761 6±0.009 1 | 0.017 3±0.000 0 | 0.017 3±0.000 0 | |
QUIRE** | 0.997 2±0.000 0 | 0.814 0±0.000 3 | 0.009 5±0.000 1 | 0.207 1±0.001 8 | |
Well_3 | MAML | 0.993 1±0.000 0 | 1.355 6±0.000 0 | 0.024 1±0.000 0 | 0.741 9±0.000 0 |
ML-KNN* | 0.999 3±0.000 0 | 0.764 6±0.000 0 | 0.002 5±0.000 0 | 0.245 1±0.000 4 | |
BP-MLL* | 0.989 1±0.000 0 | 0.823 9±0.000 1 | 0.027 8±0.000 0 | 0.033 8±0.000 0 | |
GLOCAL* | 0.992 8±0.000 0 | 0.808 8±0.000 0 | 0.016 8±0.000 0 | 0.033 8±0.000 0 | |
QUIRE** | 0.995 3±0.000 0 | 0.844 6±0.000 4 | 0.014 5±0.000 1 | 0.212 6±0.007 4 | |
Well_4 | MAML | 0.995 9±0.000 0 | 1.327 2±0.000 2 | 0.008 9±0.000 1 | 0.723 2±0.000 1 |
ML-KNN* | 0.997 5±0.000 0 | 0.879 7±0.002 0 | 0.008 0±0.000 0 | 0.277 4±0.000 1 | |
BP-MLL* | 0.986 0±0.000 0 | 0.945 0±0.001 7 | 0.035 0±0.000 0 | 0.031 8±0.000 0 | |
GLOCAL* | 0.989 0±0.000 0 | 0.934 0±0.001 4 | 0.026 3±0.000 0 | 0.031 8±0.000 1 | |
QUIRE** | 0.998 1±0.000 0 | 0.825 7±0.000 1 | 0.006 4±0.000 1 | 0.186 9±0.002 2 |
Tab. 6 Comparison of four evaluation indicators between MAML and comparison algorithms on well logging datasets
数据集 | 算法 | 评价指标 | |||
---|---|---|---|---|---|
AveragePrecision | Coverage | RankingLoss | Accuracy | ||
Well_1 | MAML | 0.990 9±0.000 0 | 1.267 8±0.000 04 | 0.035 3±0.000 1 | 0.666 7±0.000 4 |
ML-KNN* | 0.987 9±0.000 0 | 0.694 0±0.000 4 | 0.003 2±0.000 0 | 0.218 6±0.000 0 | |
BP-MLL* | 0.988 5±0.000 0 | 0.748 6±0.008 3 | 0.025 0±0.000 0 | 0.021 9±0.000 0 | |
GLOCAL* | 0.989 9±0.000 0 | 0.748 6±0.000 5 | 0.020 7±0.000 0 | 0.021 9±0.000 0 | |
QUIRE** | 0.997 8±0.000 0 | 0.637 0±0.001 6 | 0.006 8±0.000 0 | 0.147 0±0.000 0 | |
Well_2 | MAML | 0.996 4±0.000 0 | 1.328 2±0.000 3 | 0.014 4±0.000 1 | 0.679 4±0.000 2 |
ML-KNN* | 0.994 1±0.000 0 | 0.746 3±0.000 2 | 0.015 1±0.000 0 | 0.265 6±0.000 4 | |
BP-MLL* | 0.987 7±0.000 0 | 0.786 3±0.000 1 | 0.031 2±0.000 0 | 0.017 3±0.000 0 | |
GLOCAL* | 0.991 9±0.000 0 | 0.761 6±0.009 1 | 0.017 3±0.000 0 | 0.017 3±0.000 0 | |
QUIRE** | 0.997 2±0.000 0 | 0.814 0±0.000 3 | 0.009 5±0.000 1 | 0.207 1±0.001 8 | |
Well_3 | MAML | 0.993 1±0.000 0 | 1.355 6±0.000 0 | 0.024 1±0.000 0 | 0.741 9±0.000 0 |
ML-KNN* | 0.999 3±0.000 0 | 0.764 6±0.000 0 | 0.002 5±0.000 0 | 0.245 1±0.000 4 | |
BP-MLL* | 0.989 1±0.000 0 | 0.823 9±0.000 1 | 0.027 8±0.000 0 | 0.033 8±0.000 0 | |
GLOCAL* | 0.992 8±0.000 0 | 0.808 8±0.000 0 | 0.016 8±0.000 0 | 0.033 8±0.000 0 | |
QUIRE** | 0.995 3±0.000 0 | 0.844 6±0.000 4 | 0.014 5±0.000 1 | 0.212 6±0.007 4 | |
Well_4 | MAML | 0.995 9±0.000 0 | 1.327 2±0.000 2 | 0.008 9±0.000 1 | 0.723 2±0.000 1 |
ML-KNN* | 0.997 5±0.000 0 | 0.879 7±0.002 0 | 0.008 0±0.000 0 | 0.277 4±0.000 1 | |
BP-MLL* | 0.986 0±0.000 0 | 0.945 0±0.001 7 | 0.035 0±0.000 0 | 0.031 8±0.000 0 | |
GLOCAL* | 0.989 0±0.000 0 | 0.934 0±0.001 4 | 0.026 3±0.000 0 | 0.031 8±0.000 1 | |
QUIRE** | 0.998 1±0.000 0 | 0.825 7±0.000 1 | 0.006 4±0.000 1 | 0.186 9±0.002 2 |
数据集 | 量化指标 | 样本1 | 样本2 | 样本3 | 样本4 | 样本5 | 样本6 | 样本7 | 样本8 | 样本9 | 样本10 |
---|---|---|---|---|---|---|---|---|---|---|---|
Well_1 | 信息性 | 0.616 5 | 0.615 7 | 0.616 0 | 0.615 6 | 0.615 3 | 0.615 1 | 0.614 9 | 0.614 6 | 0.614 7 | 0.614 5 |
代表性 | 10.452 7 | 10.241 6 | 10.233 6 | 10.010 9 | 10.396 2 | 9.708 2 | 9.601 6 | 9.443 9 | 9.582 8 | 9.282 9 | |
丰富性 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | |
Well_2 | 信息性 | 0.627 6 | 0.627 5 | 0.627 4 | 0.627 1 | 0.626 9 | 0.626 7 | 0.626 7 | 0.626 5 | 0.626 3 | 0.626 2 |
代表性 | 23.034 1 | 21.597 6 | 22.309 6 | 21.898 6 | 21.663 8 | 21.311 3 | 21.521 0 | 21.285 5 | 22.080 6 | 20.615 3 | |
丰富性 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | |
Well_3 | 信息性 | 0.627 3 | 0.627 6 | 0.627 9 | 0.628 4 | 0.628 3 | 0.627 9 | 0.628 1 | 0.627 9 | 0.627 9 | 0.627 7 |
代表性 | 29.288 9 | 31.409 8 | 29.119 9 | 27.062 8 | 31.215 9 | 28.639 7 | 30.950 4 | 28.760 5 | 30.801 1 | 29.030 4 | |
丰富性 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | |
Well_4 | 信息性 | 0.630 3 | 0.630 2 | 0.629 7 | 0.630 0 | 0.629 9 | 0.629 7 | 0.629 7 | 0.629 5 | 0.629 3 | 0.629 0 |
代表性 | 37.107 3 | 39.411 0 | 37.947 1 | 38.015 3 | 37.197 5 | 37.585 8 | 37.038 1 | 38.503 6 | 36.040 5 | 38.402 3 | |
丰富性 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 |
Tab. 7 Informativity, representativeness, and richness quantitative results of MAML algorithm to 10 candidate well logging samples
数据集 | 量化指标 | 样本1 | 样本2 | 样本3 | 样本4 | 样本5 | 样本6 | 样本7 | 样本8 | 样本9 | 样本10 |
---|---|---|---|---|---|---|---|---|---|---|---|
Well_1 | 信息性 | 0.616 5 | 0.615 7 | 0.616 0 | 0.615 6 | 0.615 3 | 0.615 1 | 0.614 9 | 0.614 6 | 0.614 7 | 0.614 5 |
代表性 | 10.452 7 | 10.241 6 | 10.233 6 | 10.010 9 | 10.396 2 | 9.708 2 | 9.601 6 | 9.443 9 | 9.582 8 | 9.282 9 | |
丰富性 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | |
Well_2 | 信息性 | 0.627 6 | 0.627 5 | 0.627 4 | 0.627 1 | 0.626 9 | 0.626 7 | 0.626 7 | 0.626 5 | 0.626 3 | 0.626 2 |
代表性 | 23.034 1 | 21.597 6 | 22.309 6 | 21.898 6 | 21.663 8 | 21.311 3 | 21.521 0 | 21.285 5 | 22.080 6 | 20.615 3 | |
丰富性 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | |
Well_3 | 信息性 | 0.627 3 | 0.627 6 | 0.627 9 | 0.628 4 | 0.628 3 | 0.627 9 | 0.628 1 | 0.627 9 | 0.627 9 | 0.627 7 |
代表性 | 29.288 9 | 31.409 8 | 29.119 9 | 27.062 8 | 31.215 9 | 28.639 7 | 30.950 4 | 28.760 5 | 30.801 1 | 29.030 4 | |
丰富性 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | |
Well_4 | 信息性 | 0.630 3 | 0.630 2 | 0.629 7 | 0.630 0 | 0.629 9 | 0.629 7 | 0.629 7 | 0.629 5 | 0.629 3 | 0.629 0 |
代表性 | 37.107 3 | 39.411 0 | 37.947 1 | 38.015 3 | 37.197 5 | 37.585 8 | 37.038 1 | 38.503 6 | 36.040 5 | 38.402 3 | |
丰富性 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 | 0.250 0 |
序号 | 信息性 | 代表性 | 丰富性 |
---|---|---|---|
1 | 0.628 3 | 4.764 6 | 0.250 0 |
2 | 0.628 3 | 4.753 2 | 0.250 0 |
3 | 0.628 1 | 4.747 9 | 0.250 0 |
4 | 0.628 0 | 4.746 2 | 0.250 0 |
5 | 0.628 0 | 4.743 5 | 0.250 0 |
6 | 0.628 0 | 4.738 9 | 0.250 0 |
7 | 0.628 0 | 4.735 0 | 0.250 0 |
8 | 0.628 0 | 4.734 0 | 0.250 0 |
9 | 0.628 0 | 4.730 9 | 0.250 0 |
10 | 0.628 0 | 4.718 0 | 0.250 0 |
Tab. 8 Top-10 samples after last round of screening of Well_1 dataset
序号 | 信息性 | 代表性 | 丰富性 |
---|---|---|---|
1 | 0.628 3 | 4.764 6 | 0.250 0 |
2 | 0.628 3 | 4.753 2 | 0.250 0 |
3 | 0.628 1 | 4.747 9 | 0.250 0 |
4 | 0.628 0 | 4.746 2 | 0.250 0 |
5 | 0.628 0 | 4.743 5 | 0.250 0 |
6 | 0.628 0 | 4.738 9 | 0.250 0 |
7 | 0.628 0 | 4.735 0 | 0.250 0 |
8 | 0.628 0 | 4.734 0 | 0.250 0 |
9 | 0.628 0 | 4.730 9 | 0.250 0 |
10 | 0.628 0 | 4.718 0 | 0.250 0 |
1 | 董大忠,王玉满,李新景,等.中国页岩气勘探开发新突破及发展前景思考[J].天然气工业, 2016, 36(1): 19-32. 10.3787/j.issn.1000-0976.2016.01.003 |
DONG D Z, WANG Y M, LI X J, et al. Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry, 2016, 36(1): 19-32. 10.3787/j.issn.1000-0976.2016.01.003 | |
2 | 邹才能,董大忠,王玉满,等.中国页岩气特征、挑战及前景(一) [J].石油勘探与开发, 2015, 42(6): 689-701. 10.11698/PED.2015.06.01 |
ZOU C N, DONG D Z, WANG Y M, et al. Shale gas in China: characteristics, challenges and prospects (Ⅰ) [J]. Petroleum Exploration and Development, 2015, 42(6): 689-701. 10.11698/PED.2015.06.01 | |
3 | 梁兴,王高成,徐政语,等.中国南方海相复杂山地页岩气储层甜点综合评价技术——以昭通国家级页岩气示范区为例[J].天然气工业, 2016, 36(1): 33-42. 10.3787/j.issn.1000-0976.2016.01.004 |
LIANG X, WANG G C, XU Z Y, et al. Comprehensive evaluation technology for shale gas sweet spots in the complex marine mountains, South China: a case study from Zhaotong national shale gas demonstration zone[J]. Natural Gas Industry, 2016, 36(1): 33-42. 10.3787/j.issn.1000-0976.2016.01.004 | |
4 | AL-SALEMI B, AYOB M, KENDALL G, et al. Multi-label Arabic text categorization: a benchmark and baseline comparison of multi-label learning algorithms[J]. Information Processing and Management, 2019, 56(1): 212-227. 10.1016/j.ipm.2018.09.008 |
5 | IVAN CHANG C I, CHEN R B. Active learning with simultaneous subject and variable selections[J]. Neurocomputing, 2019, 329: 495-505. 10.1016/j.neucom.2018.11.036 |
6 | HUANG S J, LI G X, HUANG W Y, et al. Incremental multi-label learning with active queries[J]. Journal of Computer Science and Technology, 2020, 35(2): 234-246. 10.1007/s11390-020-9994-3 |
7 | RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496. 10.1126/science.1242072 |
8 | ZHANG M L, ZHOU Z H. Multi-label learning by instance differentiation [C]// Proceedings of the 22nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2007: 669-674. 10.1609/aaai.v34i07.6986 |
9 | 钟光海,陈丽清,廖茂杰,等.页岩气储层品质测井综合评价[J].天然气工业, 2020, 40(2): 54-60. |
ZHONG G H, CHEN L Q, LIAO M J, et al. A comprehensive logging evaluation of shale gas reservoir quality[J]. Natural Gas Industry, 2020, 40(2): 54-60. | |
10 | UEDA N, SAITO K. Parametric mixture models for multi-labeled text [C]// Proceedings of the 15th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2002: 737-744. 10.1145/775047.775140 |
11 | REYES O, ALTALHI A H, VENTURA S. Statistical comparisons of active learning strategies over multiple datasets[J]. Knowledge-Based Systems, 2018, 145: 274-288. 10.1016/j.knosys.2018.01.033 |
12 | 严伟,刘帅,冯明刚,等.四川盆地丁山区块页岩气储层关键参数测井评价方法[J].岩性油气藏, 2019, 31(3): 95-104. 10.12108/yxyqc.20190311 |
YAN W, LIU S, FENG M G, et al. Well logging evaluation methods of key parameters for shale gas reservoir in Dingshan block, Sichuan Basin[J]. Lithologic Reservoirs, 2019, 31(3): 95-104. 10.12108/yxyqc.20190311 | |
13 | 赖富强,罗涵,覃栋优,等.基于层次分析法的页岩气储层可压裂性评价研究[J].特种油气藏, 2018, 25(3): 154-159. 10.3969/j.issn.1006-6535.2018.03.031 |
LAI F Q, LUO H, QIN D Y, et al. Crushability evaluation of shale gas reservoir based on analytic hierarchy process[J]. Special Oil and Gas Reservoirs, 2018, 25(3): 154-159. 10.3969/j.issn.1006-6535.2018.03.031 | |
14 | 石文睿,张超谟,张占松,等.涪陵页岩气田焦石坝页岩气储层含气量测井评价[J].测井技术, 2015, 39(3): 101-106. |
SHI W R, ZHANG C M, ZHANG Z S, et al. Log evaluation of gas content from Jiaoshiba shale gas reservoir in Fuling gas field[J]. Well Logging Technology, 2015, 39(3): 101-106. | |
15 | QUEVEDO J R, LUACES O, BAHAMONDE A. Multilabel classifiers with a probabilistic thresholding strategy[J]. Pattern Recognition, 2012, 45(2): 876-883. 10.1016/j.patcog.2011.08.007 |
16 | WANG M, FU K, MIN F, et al. Active learning through label error statistical methods[J]. Knowledge-Based Systems, 2020, 189: No.105140. 10.1016/j.knosys.2019.105140 |
17 | WANG M, MIN F, ZHANG Z H, et al. Active learning through density clustering[J]. Expert Systems with Applications, 2017, 85: 305-317. 10.1016/j.eswa.2017.05.046 |
18 | LUO X, DU H Q, ZHOU G M, et al. A novel query strategy-based rank batch-mode active learning method for high-resolution remote sensing image classification[J]. Remote Sensing, 2021, 13(11): No.2234. 10.3390/rs13112234 |
19 | MIN F, LIU F L, WEN L Y, et al. Tri-partition cost-sensitive active learning through kNN[J]. Soft Computing, 2019, 23(5): 1557-1572. 10.1007/s00500-017-2879-x |
20 | YAN Y F, HUANG S J, CHEN S Y, et al. Active learning with query generation for cost-effective text classification [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 6583-6590. 10.1609/aaai.v34i04.6133 |
21 | WANG M, YU H T, MIN F, et al. Noise label learning through label confidence statistical inference[J]. Knowledge-Based Systems, 2021, 227: No.107234. 10.1016/j.knosys.2021.107234 |
22 | WU J, GUO A Q, SHENG V S, et al. An active learning approach for multi-label image classification with sample noise[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2018, 32(3): No.1850005. 10.1142/s0218001418500052 |
23 | LI S N, ZHANG Z H, DUAN J Q. An ensemble multi-label feature selection algorithm based on information entropy[J]. The International Arab Journal of Information Technology, 2014, 11(4): 379-386. |
24 | HARCOURT R D. Angular eigenvalues and some classical probability density functions for the helium isoelectronic sequence[J]. Physics Letters A, 1995, 200(2): 144-148. 10.1016/0375-9601(95)00141-o |
25 | WANG M, ZHANG Y Y, MIN F. Active learning through multi-standard optimization[J]. IEEE Access, 2019, 7: 56772-56784. 10.1109/access.2019.2914263 |
26 | ZHANG M L, ZHOU Z H. ML-KNN: a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7): 2038-2048. 10.1016/j.patcog.2006.12.019 |
27 | ZHANG M L, ZHOU Z H. Multilabel neural networks with applications to functional genomics and text categorization[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(10): 1338-1351. 10.1109/tkde.2006.162 |
28 | ZHU Y, KWOK J T, ZHOU Z H. Multi-label learning with global and local label correlation[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(6): 1081-1094. 10.1109/tkde.2017.2785795 |
29 | HUANG S J, JIN R, ZHOU Z H. Active learning by querying informative and representative examples[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10): 1936-1949. 10.1109/tpami.2014.2307881 |
[1] | Fan MENG, Qunli YANG, Jing HUO, Xinkuan WANG. EraseMTS: iterative active multivariable time series anomaly detection algorithm based on margin anomaly candidate set [J]. Journal of Computer Applications, 2024, 44(5): 1458-1463. |
[2] | Guoxiang CHEN, Ziqiang YU, Haoyu ZHAO. Distributed k-nearest neighbor query algorithm for moving objects in dynamic road network [J]. Journal of Computer Applications, 2024, 44(11): 3403-3410. |
[3] | Yunyun GAO, Lasheng ZHAO, Qiang ZHANG. Acoustic word embedding model based on Bi-LSTM and convolutional-Transformer [J]. Journal of Computer Applications, 2024, 44(1): 123-128. |
[4] | Jinghong WANG, Zhixia ZHOU, Hui WANG, Haokang LI. Attribute network representation learning with dual auto-encoder [J]. Journal of Computer Applications, 2023, 43(8): 2338-2344. |
[5] | Jinhui LAI, Zichen XU, Yicheng TU, Guolong TAN. OmegaDB: concurrent computing framework of relational operators for heterogeneous architecture [J]. Journal of Computer Applications, 2023, 43(7): 2017-2025. |
[6] | Fangshu CHEN, Wei ZHANG, Xiaoming HU, Yufei ZHANG, Xiankai MENG, Linxiang SHI. Dynamic aggregate nearest neighbor query algorithm in weighted road network space [J]. Journal of Computer Applications, 2023, 43(7): 2026-2033. |
[7] | Libin CEN, Jingdong LI, Chunbo LIN, Xiaoling WANG. Approximate query processing approach based on deep autoregressive model [J]. Journal of Computer Applications, 2023, 43(7): 2034-2039. |
[8] | Wenhao HU, Jing LUO, Xinhui TU. Pseudo relevance feedback method for dense retrieval [J]. Journal of Computer Applications, 2023, 43(4): 1036-1042. |
[9] | Tao QIU, Jianli DING, Xiufeng XIA, Hongmei XI, Peiliang XIE, Qingyi ZHOU. Efficient complex event matching algorithm based on ordered event lists [J]. Journal of Computer Applications, 2023, 43(2): 423-429. |
[10] | Yu HONG, Hongchang CHEN, Jianpeng ZHANG, Ruiyang HUANG. Graph summarization algorithm based on node similarity grouping and graph compression [J]. Journal of Computer Applications, 2023, 43(10): 3047-3053. |
[11] | MA Yongqiang, CHEN Xiaomeng, YU Ziqiang. Range query algorithm for large scale moving objects in distributed environment [J]. Journal of Computer Applications, 2023, 43(1): 111-121. |
[12] | Nanjiang CHENG, Zhenxia YU, Lin CHEN, Hezhe QIAO. Multi-source and multi-label pedestrian attribute recognition based on domain adaptation [J]. Journal of Computer Applications, 2022, 42(8): 2401-2406. |
[13] | Wendi HUA, Yuan GAO, Meng LYU, Ping XIE. Research on Bloom filter: a survey [J]. Journal of Computer Applications, 2022, 42(6): 1729-1747. |
[14] | Runze LI, Xuejiao SUN. Data stream preference query based on extraction sequence according to temporal condition [J]. Journal of Computer Applications, 2022, 42(3): 724-730. |
[15] | Jun FENG, Bingfa WANG, Jiamin LU. Query performance evaluation of distributed resource description framework data management systems [J]. Journal of Computer Applications, 2022, 42(2): 440-448. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||