Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (2): 440-448.DOI: 10.11772/j.issn.1001-9081.2021020255
• Data science and technology • Previous Articles
Jun FENG, Bingfa WANG, Jiamin LU()
Received:
2021-02-22
Revised:
2021-04-28
Accepted:
2021-04-29
Online:
2021-05-11
Published:
2022-02-10
Contact:
Jiamin LU
About author:
FENG Jun, born in 1969, Ph. D., professor. Her research interests include spatio-temporal data management, intelligent data processing, data mining, water conservancy informatization.Supported by:
通讯作者:
陆佳民
作者简介:
冯钧(1969—),女,江苏武进人,教授,博士,CCF会员,主要研究方向:时空数据管理、智能数据处理、数据挖掘、水利信息化;基金资助:
CLC Number:
Jun FENG, Bingfa WANG, Jiamin LU. Query performance evaluation of distributed resource description framework data management systems[J]. Journal of Computer Applications, 2022, 42(2): 440-448.
冯钧, 王秉发, 陆佳民. 分布式资源描述框架数据管理系统查询性能评价[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 440-448.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021020255
系统 | 执行模型 | 存储模式 | 基数评估 方式 | 查询规划方式 |
---|---|---|---|---|
S2RDF | Spark | VP+ExtVP | 概要统计信息 | 贪心搜索 |
PRoST | Spark | VP+WPT | 概要统计信息 | 贪心搜索 |
WiW | Spark | WPT+iWPT | 特征集 | 贪心搜索 |
C3W | Spark | WPT+iWPT+jWPT-inner | 特征集 | 贪心搜索 |
C2WVP | Spark | WPT+iWPT+VP | 特征集 | 贪心搜索 |
TriAD | RAM | 六重索引 | 摘要图 | 动态规划 |
AdPart | RAM | 哈希划分 | 概要统计信息 | 动态规划 |
RDFox | RAM | 哈希划分 | 摘要图 | 动态规划 |
Tab. 1 Related characteristics of experimental systems for comparison
系统 | 执行模型 | 存储模式 | 基数评估 方式 | 查询规划方式 |
---|---|---|---|---|
S2RDF | Spark | VP+ExtVP | 概要统计信息 | 贪心搜索 |
PRoST | Spark | VP+WPT | 概要统计信息 | 贪心搜索 |
WiW | Spark | WPT+iWPT | 特征集 | 贪心搜索 |
C3W | Spark | WPT+iWPT+jWPT-inner | 特征集 | 贪心搜索 |
C2WVP | Spark | WPT+iWPT+VP | 特征集 | 贪心搜索 |
TriAD | RAM | 六重索引 | 摘要图 | 动态规划 |
AdPart | RAM | 哈希划分 | 概要统计信息 | 动态规划 |
RDFox | RAM | 哈希划分 | 摘要图 | 动态规划 |
数据集 | 三元组数/106 | 唯一主语数/106 | 唯一宾语数/106 | 唯一的主语与宾语交集数/106 | 唯一谓语数/106 | 数据集大小/GB |
---|---|---|---|---|---|---|
WatDiv-1B | 1 092.16 | 52.12 | 179.09 | 46.95 | 86 | 149.00 |
YAGO2 | 150.70 | 10.06 | 31.77 | 1.33 | 98 | 9.35 |
Tab. 2 Statistics of datasets used in experiments
数据集 | 三元组数/106 | 唯一主语数/106 | 唯一宾语数/106 | 唯一的主语与宾语交集数/106 | 唯一谓语数/106 | 数据集大小/GB |
---|---|---|---|---|---|---|
WatDiv-1B | 1 092.16 | 52.12 | 179.09 | 46.95 | 86 | 149.00 |
YAGO2 | 150.70 | 10.06 | 31.77 | 1.33 | 98 | 9.35 |
查询类型 | 查询响应时间/ms | |||||||
---|---|---|---|---|---|---|---|---|
S2RDF | PRoST | WiW | C3W | C2WVP | TriAD | AdPart | RDFox | |
L1 | 1 619 | 997 | 993 | 1 532 | 1 009 | 21 | 12 | 2 |
L2 | 1 093 | 940 | 946 | 1 132 | 961 | 38 | 37 | 38 |
L3 | 1 181 | 519 | 536 | 672 | 604 | 14 | 5 | 2 |
L4 | 567 | 359 | 373 | 602 | 455 | 12 | 4 | 4 |
L5 | 781 | 582 | 615 | 999 | 842 | 52 | 56 | 28 |
GM-L | 985 | 633 | 649 | 931 | 742 | 23 | 14 | 7 |
S1 | 354 | 202 | 204 | 1 024 | 1 822 | 84 | 43 | 5 |
S2 | 975 | 491 | 510 | 552 | 550 | 73 | 17 | 12 |
S3 | 452 | 538 | 479 | 582 | 587 | 29 | 8 | 9 |
S4 | 478 | 743 | 751 | 661 | 874 | 68 | 25 | 23 |
S5 | 456 | 518 | 534 | 594 | 545 | — | 10 | 8 |
S6 | 396 | 501 | 473 | 582 | 541 | 24 | 3 | 4 |
S7 | 351 | 1 403 | 1 519 | 716 | 1 311 | 9 | 6 | 2 |
GM-S | 647 | 759 | 758 | 659 | 794 | — | 10 | 7 |
F1 | 1 175 | 1 555 | 1 469 | 1 484 | 1 319 | 45 | 21 | 15 |
F2 | 3 366 | 1 060 | 1 163 | 1 331 | 1 066 | 562 | 33 | 5 |
F3 | 9 020 | 23 935 | 28 525 | 1 616 | 2 406 | 505 | 28 | 6 |
F4 | 4 410 | 25 927 | 153 779 | 1 772 | 100 174 | — | 49 | 11 |
F5 | 4 952 | 6 536 | 6 692 | 1 708 | 1 806 | 763 | 26 | 4 |
GM-F | 3 787 | 5 821 | 8 711 | 1 574 | 3 609 | — | 30 | 7 |
C1 | 7 170 | 2 313 | 2 533 | 7 613 | 2 339 | 482 | 104 | 201 |
C2 | 3 610 | 42 384 | 46 924 | — | 6 814 | 675 | 145 | 198 |
C3 | 23 267 | 5 791 | 6 757 | 7 489 | 5 055 | 845 | 10 076 | 295 |
GM-C | 8 445 | 8 280 | 9 295 | — | 4 319 | 650 | 534 | 227 |
Tab. 3 Comparison of query time of different systems on WatDiv basic query set
查询类型 | 查询响应时间/ms | |||||||
---|---|---|---|---|---|---|---|---|
S2RDF | PRoST | WiW | C3W | C2WVP | TriAD | AdPart | RDFox | |
L1 | 1 619 | 997 | 993 | 1 532 | 1 009 | 21 | 12 | 2 |
L2 | 1 093 | 940 | 946 | 1 132 | 961 | 38 | 37 | 38 |
L3 | 1 181 | 519 | 536 | 672 | 604 | 14 | 5 | 2 |
L4 | 567 | 359 | 373 | 602 | 455 | 12 | 4 | 4 |
L5 | 781 | 582 | 615 | 999 | 842 | 52 | 56 | 28 |
GM-L | 985 | 633 | 649 | 931 | 742 | 23 | 14 | 7 |
S1 | 354 | 202 | 204 | 1 024 | 1 822 | 84 | 43 | 5 |
S2 | 975 | 491 | 510 | 552 | 550 | 73 | 17 | 12 |
S3 | 452 | 538 | 479 | 582 | 587 | 29 | 8 | 9 |
S4 | 478 | 743 | 751 | 661 | 874 | 68 | 25 | 23 |
S5 | 456 | 518 | 534 | 594 | 545 | — | 10 | 8 |
S6 | 396 | 501 | 473 | 582 | 541 | 24 | 3 | 4 |
S7 | 351 | 1 403 | 1 519 | 716 | 1 311 | 9 | 6 | 2 |
GM-S | 647 | 759 | 758 | 659 | 794 | — | 10 | 7 |
F1 | 1 175 | 1 555 | 1 469 | 1 484 | 1 319 | 45 | 21 | 15 |
F2 | 3 366 | 1 060 | 1 163 | 1 331 | 1 066 | 562 | 33 | 5 |
F3 | 9 020 | 23 935 | 28 525 | 1 616 | 2 406 | 505 | 28 | 6 |
F4 | 4 410 | 25 927 | 153 779 | 1 772 | 100 174 | — | 49 | 11 |
F5 | 4 952 | 6 536 | 6 692 | 1 708 | 1 806 | 763 | 26 | 4 |
GM-F | 3 787 | 5 821 | 8 711 | 1 574 | 3 609 | — | 30 | 7 |
C1 | 7 170 | 2 313 | 2 533 | 7 613 | 2 339 | 482 | 104 | 201 |
C2 | 3 610 | 42 384 | 46 924 | — | 6 814 | 675 | 145 | 198 |
C3 | 23 267 | 5 791 | 6 757 | 7 489 | 5 055 | 845 | 10 076 | 295 |
GM-C | 8 445 | 8 280 | 9 295 | — | 4 319 | 650 | 534 | 227 |
查询类型 | 查询响应时间/ms | |||||||
---|---|---|---|---|---|---|---|---|
S2RDF | PRoST | WiW | C3W | C2WVP | TriAD | AdPart | RDFox | |
IL-1-5 | 129 621 | 19 616 | 20 360 | 174 888 | 19 564 | 10 223 | 48 | 4 |
IL-1-6 | 38 406 | 24 666 | 24 021 | 31 658 | 24 488 | 20 456 | 26 | 4 |
IL-1-7 | 42 092 | 23 683 | 26 743 | 174 985 | 25 499 | 33 169 | 187 | 35 |
IL-1-8 | 41 929 | 26 083 | 27 139 | 175 935 | 25 134 | 17 896 | 20 | 5 |
IL-1-9 | 43 990 | 27 303 | 24 183 | 181 073 | 26 924 | 9 201 | 332 | 5 |
IL-1-10 | 40 206 | 26 543 | 28 947 | 174 527 | 27 597 | 8 688 | 242 | 19 |
GM-IL-1 | 49 954 | 24 506 | 25 073 | 132 399 | 24 719 | 14 659 | 85 | 8 |
IL-2-5 | 115 919 | 27 597 | 28 301 | 202 488 | 28 230 | 10 247 | 68 | 5 |
IL-2-6 | 38 007 | 33 236 | 35 160 | 21 580 | 34 046 | 15 317 | 66 | 3 |
IL-2-7 | 36 270 | 33 605 | 34 689 | 413 067 | 35 138 | 4 501 | 178 | 12 |
IL-2-8 | 35 536 | 35 802 | 34 716 | 382 925 | 34 336 | 20 112 | 115 | 7 |
IL-2-9 | 39 118 | 37 377 | 37 119 | 386 668 | 37 298 | 17 968 | 122 | 7 |
IL-2-10 | 36 211 | 34 563 | 39 133 | 384 681 | 38 251 | 17 891 | 189 | 10 |
GM-IL-2 | 44 762 | 33 548 | 34 683 | 216 440 | 34 391 | 12 881 | 113 | 7 |
IL-3-5 | 177 629 | 38 661 | 42 775 | 94 754 | 44 299 | — | — | 782 884 |
IL-3-6 | 364 554 | 118 863 | 90 537 | 57 232 | 87 870 | — | — | 2 042 988 |
IL-3-7 | 211 957 | 76 291 | 80 042 | 57 150 | 86 393 | — | — | 1 307 131 |
IL-3-8 | 4 263 406 | 96 191 | 96 693 | 143 280 | 164 449 | — | — | 7 379 970 |
IL-3-9 | 351 679 | 165 339 | 155 332 | 95 340 | 107 036 | — | — | 2 452 539 |
IL-3-10 | 354 677 | 168 895 | 167 061 | 135 009 | 169 329 | — | — | 2 154 819 |
GM-IL-3 | 440 430 | 99 004 | 95 898 | 91 099 | 100 039 | — | — | 2 082 383 |
Tab. 4 Comparison of query response time of different systems on WatDiv incremental linear query set
查询类型 | 查询响应时间/ms | |||||||
---|---|---|---|---|---|---|---|---|
S2RDF | PRoST | WiW | C3W | C2WVP | TriAD | AdPart | RDFox | |
IL-1-5 | 129 621 | 19 616 | 20 360 | 174 888 | 19 564 | 10 223 | 48 | 4 |
IL-1-6 | 38 406 | 24 666 | 24 021 | 31 658 | 24 488 | 20 456 | 26 | 4 |
IL-1-7 | 42 092 | 23 683 | 26 743 | 174 985 | 25 499 | 33 169 | 187 | 35 |
IL-1-8 | 41 929 | 26 083 | 27 139 | 175 935 | 25 134 | 17 896 | 20 | 5 |
IL-1-9 | 43 990 | 27 303 | 24 183 | 181 073 | 26 924 | 9 201 | 332 | 5 |
IL-1-10 | 40 206 | 26 543 | 28 947 | 174 527 | 27 597 | 8 688 | 242 | 19 |
GM-IL-1 | 49 954 | 24 506 | 25 073 | 132 399 | 24 719 | 14 659 | 85 | 8 |
IL-2-5 | 115 919 | 27 597 | 28 301 | 202 488 | 28 230 | 10 247 | 68 | 5 |
IL-2-6 | 38 007 | 33 236 | 35 160 | 21 580 | 34 046 | 15 317 | 66 | 3 |
IL-2-7 | 36 270 | 33 605 | 34 689 | 413 067 | 35 138 | 4 501 | 178 | 12 |
IL-2-8 | 35 536 | 35 802 | 34 716 | 382 925 | 34 336 | 20 112 | 115 | 7 |
IL-2-9 | 39 118 | 37 377 | 37 119 | 386 668 | 37 298 | 17 968 | 122 | 7 |
IL-2-10 | 36 211 | 34 563 | 39 133 | 384 681 | 38 251 | 17 891 | 189 | 10 |
GM-IL-2 | 44 762 | 33 548 | 34 683 | 216 440 | 34 391 | 12 881 | 113 | 7 |
IL-3-5 | 177 629 | 38 661 | 42 775 | 94 754 | 44 299 | — | — | 782 884 |
IL-3-6 | 364 554 | 118 863 | 90 537 | 57 232 | 87 870 | — | — | 2 042 988 |
IL-3-7 | 211 957 | 76 291 | 80 042 | 57 150 | 86 393 | — | — | 1 307 131 |
IL-3-8 | 4 263 406 | 96 191 | 96 693 | 143 280 | 164 449 | — | — | 7 379 970 |
IL-3-9 | 351 679 | 165 339 | 155 332 | 95 340 | 107 036 | — | — | 2 452 539 |
IL-3-10 | 354 677 | 168 895 | 167 061 | 135 009 | 169 329 | — | — | 2 154 819 |
GM-IL-3 | 440 430 | 99 004 | 95 898 | 91 099 | 100 039 | — | — | 2 082 383 |
查询 类型 | 不同系统下的查询响应时间/ms | ||||||
---|---|---|---|---|---|---|---|
S2RDF | PRoST | WiW | C3W | C2WVP | TriAD | AdPart | |
Y1 | 3 483 | 1 272 | 1 121 | 1 513 | 1 052 | 16 | 3 |
Y2 | 3 546 | 1 754 | 3 294 | 5 349 | 4 869 | 1 568 | 19 |
Y3 | 2 400 | 1 406 | 1 440 | 1 655 | 1 334 | 220 | 11 |
Y4 | 2 340 | 1 435 | 1 306 | 3 850 | 1 313 | 18 | 2 |
GM-Y | 2 886 | 1 457 | 1 623 | 2 680 | 1 731 | 100 | 6 |
Tab. 5 Comparison of query response time of different systems on YAGO2 query set
查询 类型 | 不同系统下的查询响应时间/ms | ||||||
---|---|---|---|---|---|---|---|
S2RDF | PRoST | WiW | C3W | C2WVP | TriAD | AdPart | |
Y1 | 3 483 | 1 272 | 1 121 | 1 513 | 1 052 | 16 | 3 |
Y2 | 3 546 | 1 754 | 3 294 | 5 349 | 4 869 | 1 568 | 19 |
Y3 | 2 400 | 1 406 | 1 440 | 1 655 | 1 334 | 220 | 11 |
Y4 | 2 340 | 1 435 | 1 306 | 3 850 | 1 313 | 18 | 2 |
GM-Y | 2 886 | 1 457 | 1 623 | 2 680 | 1 731 | 100 | 6 |
查询类型 | 不同系统的查询准确率/% | |||||||
---|---|---|---|---|---|---|---|---|
S2RDF | PRoST | WiW | C3W | C2WVP | TriAD | AdPart | ||
WatDiv基础测试用例 | L | 84 | 100 | 100 | 100 | 100 | 100 | 56 |
S | 86 | 100 | 100 | 100 | 100 | 86 | 71 | |
F | 92 | 100 | 100 | 100 | 100 | 100 | 84 | |
C | 67 | 100 | 100 | 67 | 100 | 100 | 67 | |
WatDiv增量链型查询 | IL-1 | 98 | 100 | 100 | 100 | 100 | 100 | 100 |
IL-2 | 90 | 100 | 100 | 100 | 100 | 100 | 87 | |
IL-3 | 0 | 100 | 100 | 100 | 100 | 0 | 0 | |
YAGO2基础测试用例 | Y1 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Y2 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
Y3 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
Y4 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Tab. 6 Accuracy of different SPARQL queries in different systems
查询类型 | 不同系统的查询准确率/% | |||||||
---|---|---|---|---|---|---|---|---|
S2RDF | PRoST | WiW | C3W | C2WVP | TriAD | AdPart | ||
WatDiv基础测试用例 | L | 84 | 100 | 100 | 100 | 100 | 100 | 56 |
S | 86 | 100 | 100 | 100 | 100 | 86 | 71 | |
F | 92 | 100 | 100 | 100 | 100 | 100 | 84 | |
C | 67 | 100 | 100 | 67 | 100 | 100 | 67 | |
WatDiv增量链型查询 | IL-1 | 98 | 100 | 100 | 100 | 100 | 100 | 100 |
IL-2 | 90 | 100 | 100 | 100 | 100 | 100 | 87 | |
IL-3 | 0 | 100 | 100 | 100 | 100 | 0 | 0 | |
YAGO2基础测试用例 | Y1 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Y2 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
Y3 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
Y4 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
1 | 邹磊,彭鹏.分布式RDF数据管理综述[J].计算机研究与发展, 2017, 54(6): 1213-1224. 10.7544/issn1000-1239.2017.20160908 |
ZOU L, PENG P. A survey of distributed RDF data management[J]. Journal of Computer Research and Development, 2017, 54(6): 1213-1224. 10.7544/issn1000-1239.2017.20160908 | |
2 | ZOUAGHI I, MESMOUDI A, GALICIA J, et al. Query optimization for large scale clustered RDF data [C]// Proceedings of the 22nd International Workshop on Design, Optimization, Languages and Analytical Processing of Big Data Co-located with EDBT/ICDT 2020 Joint Conference. Aachen: CEUR-WS.org, 2020: 56-65. |
3 | SPARQL query language for RDF [EB/OL]. (2013-03-26) [2021-02-15]. . 10.1002/9780471650126.dob1092 |
4 | BONIFATI A, MARTENS W, TIMM T. An analytical study of large SPARQL query logs[J]. The VLDB Journal, 2020, 29(2/3): 655-679. 10.1007/s00778-019-00558-9 |
5 | CHAWLA T, SINGH G, PILLI E S. HyPSo: hybrid partitioning for big RDF storage and query processing [C]// Proceedings of the 2019 ACM India Joint International Conference on Data Science and Management of Data. New York: ACM, 2019: 188-194. 10.1145/3297001.3297025 |
6 | KYU K M, OO A N. Graph-based indexing method for searching in RDF data [C]// Proceedings of the 2019 International Conference on Advanced Information Technologies. Piscataway: IEEE, 2019: 96-101. 10.1109/aitc.2019.8920921 |
7 | SALEEM M, SZÁRNYAS G, CONRADS F, et al. How representative is a SPARQL benchmark? an analysis of RDF triplestore benchmarks [C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 1623-1633. 10.1145/3308558.3313556 |
8 | SCHATZLE A, PRZYJACIEL-ZABLOCKI M, SKILEVIC S, et al. S2RDF: RDF querying with SPARQL on Spark[J]. Proceedings of the VLDB Endowment, 2016, 9(10): 804-815. 10.14778/2977797.2977806 |
9 | 杨程,陆佳民,冯钧.分布式环境下大规模资源描述框架数据划分方法综述[J].计算机应用, 2020, 40(11): 3184-3191. 10.1109/bigdata50022.2020.9378227 |
YANG C, LU J M, FENG J. Survey of large-scale resource description framework data partitioning methods in distributed environment[J]. Journal of Computer Applications, 2020, 40(11): 3184-3191. 10.1109/bigdata50022.2020.9378227 | |
10 | ABADI D J, MARCUS A, MADDEN S R, et al. Scalable Semantic Web data management using vertical partitioning [C]// Proceedings of the 33rd International Conference on Very Large Data Bases. New York: ACM, 2007: 411-422. |
11 | 王鑫,邹磊,王朝坤,等.知识图谱数据管理研究综述[J].软件学报, 2019, 30(7): 2139-2174. 10.13328/j.cnki.jos.005841 |
WANG X, ZOU L, WANG C K, et al. Research on knowledge graph data management: a survey[J]. Journal of Software, 2019, 30(7): 2139-2174. 10.13328/j.cnki.jos.005841 | |
12 | SCHIEVELBEIN G, ARRASCUE AYALA V A, WEI-KLEINER F, et al. Exploiting wide property tables empowered by inverse properties for efficient distributed SPARQL query evaluation [C]// Proceedings of the ISWC 2019 Satellite Tracks (Posters and Demonstrations, Industry, and Outrageous Ideas) co-located with 18th International Semantic Web Conference. Aachen: CEUR-WS.org, 2019: 81-84. |
13 | AYALA V A A, KOLEVA P, ALZOGBI A, et al. Relational schemata for distributed SPARQL query processing [C]// Proceedings of the 2019 International Workshop on Semantic Big Data. New York: ACM, 2019: No.3. 10.1145/3323878.3325804 |
14 | 王鑫,徐强,柴乐乐,等.大规模RDF图数据上高效率分布式查询处理[J].软件学报, 2019, 30(3): 498-514. 10.13328/j.cnki.jos.005696 |
WANG X, XU Q, CHAI L L, et al. Efficient distributed query processing on large scale RDF graph data[J]. Journal of Software, 2019, 30(3): 498-514. 10.13328/j.cnki.jos.005696 | |
15 | GUBICHEV A, NEUMANN T. Exploiting the query structure for efficient join ordering in SPARQL queries [C]// Proceedings of the 17th International Conference on Extending Database Technology. [S.l.]: OpenProceedings.org, 2014: 439-450. |
16 | 李国良,周煊赫,孙佶,等.基于机器学习的数据库技术综述[J].计算机学报, 2020, 43(11): 2019-2049. 10.11897/SP.J.1016.2020.02019 |
LI G L, ZHOU X H, SUN J, et al. A survey of machine learning based database techniques[J]. Chinese Journal of Computers, 2020, 43(11): 2019-2049. 10.11897/SP.J.1016.2020.02019 | |
17 | GRAUX D, JACHIET L, GENEVÈS P, et al. SPARQLGX: efficient distributed evaluation of SPARQL with Apache Spark [C]// Proceedings of the 2016 International Semantic Web Conference, LNCS9982. Cham: Springer, 2016: 80-87. |
18 | LI S H, SHEN D R, KOU Y, et al. Query optimization for massive RDF data based on Spark [C]// Proceedings of the 4th International Conference on Big Data Computing and Communications. Piscataway: IEEE, 2018: 219-224. 10.1109/bigcom.2018.00042 |
19 | COSSU M, FÄRBER M, LAUSEN G. PRoST: distributed execution of SPARQL queries using mixed partitioning strategies [C]// Proceedings of the 21th International Conference on Extending Database Technology. [S.l.]: OpenProceedings.org, 2018: 469-472. 10.1145/3323878.3325804 |
20 | HASSAN M, BANSAL S K. RDF data storage techniques for efficient SPARQL query processing using distributed computation engines [C]// Proceedings of the 2018 IEEE International Conference on Information Reuse and Integration. Piscataway: IEEE, 2018: 323-330. 10.1109/iri.2018.00056 |
21 | HASSAN M, BANSAL S K. Data partitioning scheme for efficient distributed RDF querying using Apache Spark [C]// Proceedings of the IEEE 13th International Conference on Semantic Computing. Piscataway: IEEE, 2019: 24-31. 10.1109/icosc.2019.8665614 |
22 | GURAJADA S, SEUFERT S, MILIARAKI I, et al. TriAD: a distributed shared-nothing RDF engine based on asynchronous message passing [C]// Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2014: 289-300. 10.1145/2588555.2610511 |
23 | HARBI R, ABDELAZIZ I, KALNIS P, et al. Accelerating SPARQL queries by exploiting Hash-based locality and adaptive partitioning[J]. The VLDB Journal, 2016, 25(3): 355-380. 10.1007/s00778-016-0420-y |
24 | POTTER A, MOTIK B, NENOV Y, et al. Dynamic data exchange in distributed RDF stores[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(12): 2312-2325. 10.1109/tkde.2018.2818696 |
25 | ABDELAZIZ I, HARBI R, KHAYYAT Z, et al. A survey and experimental comparison of distributed SPARQL engines for very large RDF data[J]. Proceedings of the VLDB Endowment, 2017, 10(13): 2049-2060. 10.14778/3151106.3151109 |
26 | ALUÇ G, HARTIG O, ÖZSU M T, et al. Diversified stress testing of RDF data management systems [C]// Proceedings of the 2014 International Semantic Web Conference, LNCS8796. Cham: Springer, 2014: 197-212. |
27 | HOFFART J, SUCHANEK F M, BERBERICH K, et al. YAGO2: a spatially and temporally enhanced knowledge base from Wikipedia[J]. Artificial Intelligence, 2013, 194: 28-61. 10.1016/j.artint.2012.06.001 |
[1] | ZHANG Hao, ZHU Rui, SONG Fuyao, FANG Peng, XIA Xiufeng. Bichromatic reverse k nearest neighbor query method based on distance-keyword similarity constraint [J]. Journal of Computer Applications, 2021, 41(6): 1686-1693. |
[2] | Xiajie ZHANG, Jinghua ZHU, Yang CHEN. Distributed rough set attribute reduction algorithm under Spark [J]. Journal of Computer Applications, 2020, 40(2): 518-523. |
[3] | Bin LIU, Jinrong HE, Yuancheng LI, Hong HAN. Apple price prediction method based on distributed neural network [J]. Journal of Computer Applications, 2020, 40(2): 369-374. |
[4] | Junhua GU, Feng WANG, Yongjun QI, Zheran SUN, Zepei TIAN, Yajuan ZHANG. Retrieval method of pulmonary nodule images based on multi-scale convolution feature fusion [J]. Journal of Computer Applications, 2020, 40(2): 561-565. |
[5] | CUI Yixin, CHEN Xiaodong. Spark framework based optimized large-scale spectral clustering parallel algorithm [J]. Journal of Computer Applications, 2020, 40(1): 168-172. |
[6] | CHENG Wenliang, WANG Zhihong, ZHOU Yu, GUO Yi, ZHAO Junfeng. Design of distributed computing framework for foreign exchange market monitoring [J]. Journal of Computer Applications, 2020, 40(1): 173-180. |
[7] | GUAN Haoyuan, ZHU Bin, LI Guanyu, CAI Yongjia. Efficient subgraph matching method based on resource description framework graph segmentation and vertex selectivity [J]. Journal of Computer Applications, 2019, 39(2): 360-369. |
[8] | LIU Jing, XIAO Guanfeng. Bus arrival time prediction system based on Spark and particle filter algorithm [J]. Journal of Computer Applications, 2019, 39(2): 429-435. |
[9] | LIU Zihao, LI Ling, YE Feng. Anomaly detection method for hydrologic sensor data based on SparkR [J]. Journal of Computer Applications, 2019, 39(2): 436-440. |
[10] | ZHAO Wenfang, WANG Jingli, SHANG Min, LIU Yanan. Forecasting model of pollen concentration based on particle swarm optimization and support vector machine [J]. Journal of Computer Applications, 2019, 39(1): 98-104. |
[11] | LI Longyang, DONG Yihong, SHI Weijie, PAN Jianfei. SQM: subgraph matching algorithm for single large-scale graphs under Spark [J]. Journal of Computer Applications, 2019, 39(1): 46-50. |
[12] | CUI Chen, ZHENG Linjiang, HAN Fengping, HE Mujun. Design of secondary indexes in HBase based on memory [J]. Journal of Computer Applications, 2018, 38(6): 1584-1590. |
[13] | GU Junhua, HUO Shijie, WU Junyan, YIN Jun, ZHANG Suqi. Parallel multi-layer graph partitioning method for solving maximum clique problems [J]. Journal of Computer Applications, 2018, 38(12): 3425-3432. |
[14] | FU Mou, YANG Hekun, WU Tangmei, HE Run, FENG Chaosheng, KANG Sheng. Fast video transcoding method based on Spark Streaming [J]. Journal of Computer Applications, 2018, 38(12): 3500-3508. |
[15] | GU Junhua, WU Junyan, XU Xinyun, XIE Zhijian, ZHANG Suqi. Optimization and implementation of parallel FP-Growth algorithm based on Spark [J]. Journal of Computer Applications, 2018, 38(11): 3069-3074. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||