| 1 | 
																						 
											FAYYAD, USAMA M. Advances in knowledge discovery and data mining [C]// Proceedings of the 15th Pacific-Asia Conference on Knowledge Discovery and Data Mining. New York: ACM, 2011: 113-121.  10.1007/978-3-642-20847-8 
																						 | 
										
																													
																							| 2 | 
																						 
											YANG X, HUANG K, ZHANG R, et al. Learning latent features with infinite nonnegative binary matrix tri factorization[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2018, 2(6): 450-463.  10.1109/tetci.2018.2806934 
																						 | 
										
																													
																							| 3 | 
																						 
											LONG B, ZHANG M Z, YU P S. Co-clustering by block value decomposition [C]// Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. New York: ACM, 2005: 40-53.  10.1145/1081870.1081949 
																						 | 
										
																													
																							| 4 | 
																						 
											WANG H, NIE F, HUANG H, et al. Fast non-negative matrix tri-factorization for large-scale data co-clustering [C]// Proceedings of the 22nd International Joint Conference on Artificial Intelligence. Menlo Park, CA: AAAI, 2011: 558-569.  10.1109/icdm.2011.109 
																						 | 
										
																													
																							| 5 | 
																						 
											TIAN J, QU Y. A novel framework for top-n recommendation based on non-negative matrix tri-factorization[C]// Proceedings of the 24th International Conference on Industrial Engineering and Engineering Management. Cham: Springer, 2019: 233-241.  10.1007/978-981-13-3402-3_36 
																						 | 
										
																													
																							| 6 | 
																						 
											LEE D D, SEUNG H F, Learning the parts of objects by non-negative matrix factorization [J]. Nature, 1999, 401(2): 788-791.  10.1038/44565 
																						 | 
										
																													
																							| 7 | 
																						 
											HUANG S, XU Z, LYU J. Adaptive local structure learning for document co-clustering [J]. Knowledge-Based Systems, 2018, 81(32) 148:7484.  10.1016/j.knosys.2018.02.020 
																						 | 
										
																													
																							| 8 | 
																						 
											LI T, ZHANG Y, SINDHWANI V. A non-negative matrix tri-factorization approach to sentiment classification with lexical prior knowledge[C]// Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2009: 244-252.  10.3115/1687878.1687914 
																						 | 
										
																													
																							| 9 | 
																						 
											RAMOS J. Using TF-IDF to determine word relevance in document queries[C]// Proceedings of the 1st Instructional Conference on Machine Learning. Stroudsburg, PA: Association for Computational Linguistics, 2003: 29-48.
																						 | 
										
																													
																							| 10 | 
																						 
											FU G, WANG J, DOMENICONI C, YU G. Matrix factorization-based data fusion for the prediction of lncRNA-disease associations [J]. Bioinformatics, 2017, 34(9): 1529-1537.  10.1093/bioinformatics/btx794 
																						 | 
										
																													
																							| 11 | 
																						 
											CEDDIA G, PINOLI P, CERI S, et al. Non-negative matrix tri-factorization for data integration and network-based drug repositioning[C]// Proceedings of the 2019 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). Piscataway: IEEE, 2019: 992-1003.  10.1109/cibcb.2019.8791474 
																						 | 
										
																													
																							| 12 | 
																						 
											高科. 基于隐空间的子空间学习[D]. 天津: 天津大学, 2019: 21.
																						 | 
										
																													
																							 | 
																						 
											GAO K. Subspace learning based on latent space[D]. Tianjing: Tianjing University, 2019: 21.
																						 | 
										
																													
																							| 13 | 
																						 
											汪涛, 刘阳, 席耀一. 基于图正则化非负矩阵分解的二分网络社区发现算法[J]. 电子与信息学报, 2015, 37(9): 2238-2245.  10.11999/JEIT141649 
																						 | 
										
																													
																							 | 
																						 
											WANG T, LIU Y, XI Y Y. Identifying community in bipartite networks using graph regularized-based non-negative matrix factorization[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2238-2245.  10.11999/JEIT141649 
																						 | 
										
																													
																							| 14 | 
																						 
											金弟, 何静. 基于非负矩阵三因子分解的属性网络半监督社团发现的方法: CN110851732A[P]. 2020-02-28.  10.1007/s11704-020-9203-0 
																						 | 
										
																													
																							 | 
																						 
											JIN D, HE J. Semi-supervised community discovery method for attribute networks based on non-negative matrix tri-factorization: CN110851732A[P]. 2020-02-28.  10.1007/s11704-020-9203-0 
																						 | 
										
																													
																							| 15 | 
																						 
											TAN B, SONG Y, ZHONG E, et al. Transitive transfer learning [C]// Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 1155-1164.
																						 | 
										
																													
																							| 16 | 
																						 
											JUNIOR W, PERES S M, FREIRE V, et al. OvNMTF algorithm: an overlapping non-negative matrix tri-factorization for coclustering [C]// Proceedings of the 2020 International Joint Conference on Neural Networks . Piscataway: IEEE, 2020: 348-353.  10.1109/ijcnn48605.2020.9207364 
																						 | 
										
																													
																							| 17 | 
																						 
											BUONO N DEL, PIO G. Non-negative matrix tri-factorization for co-clustering: an analysis of the block matrix[J]. Information Sciences, 2015, 301: 13-26.  10.1016/j.ins.2014.12.058 
																						 | 
										
																													
																							| 18 | 
																						 
											OPAR A, ZUPAN B, ZITNIK M. Fast optimization of non-negative matrix tri-factorization [J]. PLoS One, 2019, 14(9): 12-21.  10.1371/journal.pone.0217994 
																						 | 
										
																													
																							| 19 | 
																						 
											ABDOLLAHI B, NASRAOUI O. Using explainability for constrained matrix factorization [C]// Proceedings of the 11th ACM Conference on Recommender Systems. New York: ACM, 2017: 79-83.  10.1145/3109859.3109913 
																						 | 
										
																													
																							| 20 | 
																						 
											LU Y, CASTELLANOS M, DAYAL U, et al. Automatic construction of a context-aware sentiment lexicon: an optimization approach[C]// Proceedings of the 20th International Conference on World Wide Web. Cham: Springer, 2011: 221-231.  10.1145/1963405.1963456 
																						 | 
										
																													
																							| 21 | 
																						 
											ZHANG Y, LAI G, ZHANG M, et al. Explicit factor models for explainable recommendation based on phrase-level sentiment analysis[C]// Proceedings of the 37th International ACM SIGIR Conference. New York: ACM, 2014: 83-92.  10.1145/2600428.2609579 
																						 | 
										
																													
																							| 22 | 
																						 
											TAO Y, JIA Y, WANG N, et al. The FacT: taming latent factor models for explainability with factorization trees[C]// Proceedings of the 42nd International ACM SIGIR Conference. New York: ACM, 2019: 413-432.  10.1145/3331184.3331244 
																						 | 
										
																													
																							| 23 | 
																						 
											WU Q, TAN M, LI X, et al. NMFE-SSCC: non-negative matrix factorization ensemble for semi-supervised collective classification [J]. Knowledge-Based Systems, 2015, 89(15): 160-172.  10.1016/j.knosys.2015.06.026 
																						 | 
										
																													
																							| 24 | 
																						 
											XIAN Y, LAMPERT C H, SCHIELE B, et al. Zero-shot learning - a comprehensive evaluation of the good, the bad and the ugly [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(8): 182-199.  10.1109/cvpr.2018.00581 
																						 | 
										
																													
																							| 25 | 
																						 
											KEMP C, TENENBAUM J B, GRIFFITHS T L, et al. Learning systems of concepts with an infinite relational model [J]. Cognitive Science, 2006, 12(21): 313-329.
																						 | 
										
																													
																							| 26 | 
																						 
											WAH C, BRANSON S, WELINDER P, et al. Caltech-UCSD birds- 200-2011, CNS-TR-2010-001[R/OL]. California Institute of Technology,2010[2021-06-01]..
																						 | 
										
																													
																							| 27 | 
																						 
											CHEN G, WANG F, ZHANG C. Collaborative filtering using orthogonal nonnegative matrix tri-factorization[J]. Information Processing & Management, 2009, 45(3): 113-125.  10.1016/j.ipm.2008.12.004 
																						 |