| 1 | 黄立威,江碧涛,吕守业,等.基于深度学习的推荐系统研究综述[J].计算机学报,2018, 41(7):1619-1647.  10.11897/SP.J.1016.2018.01619 | 
																													
																							|  | HUANG L W, JIANG B T, LV S Y, et al. Survey on deep learning based recommender systems[J]. Chinese Journal of Computers, 2018, 41(7): 1619-1647.  10.11897/SP.J.1016.2018.01619 | 
																													
																							| 2 | WANG X, WANG D, XU C, et al. Explainable reasoning over knowledge graphs for recommendation[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 5329-5336.  10.1609/aaai.v33i01.33015329 | 
																													
																							| 3 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.  10.1162/neco.1997.9.8.1735 | 
																													
																							| 4 | WANG H, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 3307-3313.  10.1145/3308558.3313417 | 
																													
																							| 5 | WANG X, HE X, CAO Y, et al. KGAT: Knowledge graph attention network for recommendation[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 950-958.  10.1145/3292500.3330989 | 
																													
																							| 6 | WANG Z, LIN G, TAN H, et al. CKAN: collaborative knowledge-aware attentive network for recommender systems[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 219-228.  10.1145/3397271.3401141 | 
																													
																							| 7 | HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639-648.  10.1145/3397271.3401063 | 
																													
																							| 8 | HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering[C]// Proceedings of the 26th International Conference on World Wide Web. New York: ACM, 2017: 173-182.  10.1145/3038912.3052569 | 
																													
																							| 9 | CHENG H T, KOC L, HARMSEN J, et al. Wide & deep learning for recommender systems[C]// Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York: ACM, 2016: 7-10.  10.1145/2988450.2988454 | 
																													
																							| 10 | WANG X, HE X, WANG M, et al. Neural graph collaborative filtering[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 165-174.  10.1145/3331184.3331267 | 
																													
																							| 11 | CAO Y, WANG X, HE X, et al. Unifying knowledge graph learning and recommendation: towards a better understanding of user preferences[C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 151-161.  10.1145/3308558.3313705 | 
																													
																							| 12 | WU L, YANG Y, ZHANG K, et al. Joint item recommendation and attribute inference: an adaptive graph convolutional network approach[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 679-688.  10.1145/3397271.3401144 | 
																													
																							| 13 | WANG H, ZHANG F, WANG J, et al. RippleNet: Propagating user preferences on the knowledge graph for recommender systems[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 417-426.  10.1145/3269206.3271739 | 
																													
																							| 14 | SUN R, CAO X, ZHAO Y, et al. Multi-modal knowledge graphs for recommender systems[C]// Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 1405-1414.  10.1145/3340531.3411947 | 
																													
																							| 15 | XIA L, HUANG C, XU Y, et al. Knowledge-enhanced hierarchical graph transformer network for multi-behavior recommendation[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 4486-4493. | 
																													
																							| 16 | WANG X, HUANG T, WANG D, et al. Learning intents behind interactions with knowledge graph for recommendation[C]// Proceedings of the Web Conference 2021. New York: ACM, 2021: 878-887.  10.1145/3442381.3450133 | 
																													
																							| 17 | HAHNLOSER R H R, SARPESHKAR R, MAHOWALD M A, et al. Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit[J]. Nature, 2000, 405(6789): 947-951.  10.1038/35016072 | 
																													
																							| 18 | HAN J, MORAGA C. The influence of the sigmoid function parameters on the speed of backpropagation learning[C]// Proceedings of the 1995 International Workshop on Artificial Neural Networks from Natural to Artificial Neural Computation. Berlin: Springer, 1995: 195-201.  10.1007/3-540-59497-3_175 | 
																													
																							| 19 | GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[J]. Journal of Machine Learning Research, 2010, 9:249-256. | 
																													
																							| 20 | ZHANG F, YUAN N J, LIAN D, et al. Collaborative knowledge base embedding for recommender systems[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 353-362.  10.1145/2939672.2939673 | 
																													
																							| 21 | LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion[C]// Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. New York: ACM, 2015: 2181-2187. |