Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (12): 3499-3507.DOI: 10.11772/j.issn.1001-9081.2021060894
Special Issue: 第十八届中国机器学习会议(CCML 2021)
• The 18th China Conference on Machine Learning • Previous Articles Next Articles
					
						                                                                                                                                                                                                                    Xiancong CHEN1,2,3, Weike PAN1,2,3( ), Zhong MING1,2,3
), Zhong MING1,2,3
												  
						
						
						
					
				
Received:2021-05-12
															
							
																	Revised:2021-06-14
															
							
																	Accepted:2021-06-23
															
							
							
																	Online:2021-08-20
															
							
																	Published:2021-12-10
															
							
						Contact:
								Weike PAN   
													About author:CHEN Xiancong, born in 1995, M. S. candidate. His research interests include personalized recommendation, transfer learning.Supported by:通讯作者:
					潘微科
							作者简介:陈宪聪(1995—),男,广东茂名人,硕士研究生,主要研究方向:个性化推荐、迁移学习基金资助:CLC Number:
Xiancong CHEN, Weike PAN, Zhong MING. Staged variational autoencoder for heterogeneous one-class collaborative filtering[J]. Journal of Computer Applications, 2021, 41(12): 3499-3507.
陈宪聪, 潘微科, 明仲. 面向异构单类协同过滤的阶段式变分自编码器[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3499-3507.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021060894
| 符号 | 含义 | 
|---|---|
| 用户数 | |
| 物品数 | |
| 用户ID | |
| 物品ID | |
| 用户集合 | |
| 物品集合 | |
| 所有浏览记录集合 | |
| 所有购买记录集合 | |
| 用户 | |
| 浏览模型编码器生成的隐向量 | |
| 用户 | |
| 购买模型编码器生成的隐向量 | |
| 浏览模型变分自编码器参数 | |
| 购买模型变分自编码器参数 | |
| 迭代次数 | |
| 学习率 | |
| 正则化参数 | 
Tab. 1 Symbol description
| 符号 | 含义 | 
|---|---|
| 用户数 | |
| 物品数 | |
| 用户ID | |
| 物品ID | |
| 用户集合 | |
| 物品集合 | |
| 所有浏览记录集合 | |
| 所有购买记录集合 | |
| 用户 | |
| 浏览模型编码器生成的隐向量 | |
| 用户 | |
| 购买模型编码器生成的隐向量 | |
| 浏览模型变分自编码器参数 | |
| 购买模型变分自编码器参数 | |
| 迭代次数 | |
| 学习率 | |
| 正则化参数 | 
| 数据集 | 用户数 | 物品数 | 购买记录数 | 浏览记录数 | 
|---|---|---|---|---|
| ML10M | 71 567 | 10 681 | 309 317 | 4 000 024 | 
| Netflix | 480 189 | 17 770 | 4 554 888 | 39 628 846 | 
| Rec15 | 36 917 | 9 621 | 159 429 | 213 332 | 
Tab. 2 Statistics of three datasets after processing
| 数据集 | 用户数 | 物品数 | 购买记录数 | 浏览记录数 | 
|---|---|---|---|---|
| ML10M | 71 567 | 10 681 | 309 317 | 4 000 024 | 
| Netflix | 480 189 | 17 770 | 4 554 888 | 39 628 846 | 
| Rec15 | 36 917 | 9 621 | 159 429 | 213 332 | 
| 数据集 | 方法 | Precision@5 | Recall@5 | F1@5 | NDCG@5 | 1-call@5 | 
|---|---|---|---|---|---|---|
| ML10M | BPR | 0.068 0±0.000 2 | 0.091 5±0.000 3 | 0.065 4±0.000 1 | 0.093 3±0.000 4 | 0.283 7±0.002 3 | 
| MFLogLoss | 0.073 6±0.000 5 | 0.099 5±0.001 0 | 0.070 5±0.000 7 | 0.101 9±0.000 4 | 0.303 4±0.001 7 | |
| Multi-VAE | 0.074 4±0.000 6 | 0.099 6±0.000 9 | 0.070 9±0.000 5 | 0.102 9±0.000 8 | 0.306 2±0.002 3 | |
| RoToR | 0.087 2±0.000 1 | 0.123 9±0.000 7 | 0.085 7±0.000 1 | 0.123 5±0.000 6 | 0.356 2±0.000 8 | |
| SVAE(B+P) | 0.080 4±0.000 5 | 0.114 6±0.000 1 | 0.079 1±0.000 4 | 0.112 6±0.000 6 | 0.331 8±0.001 3 | |
| SVAE(B) | 0.093 2±0.000 5 | 0.137 3±0.000 9 | 0.093 6±0.000 5 | 0.137 1±0.001 0 | 0.374 9±0.002 6 | |
| Netflix | BPR | 0.075 5±0.000 4 | 0.050 3±0.000 5 | 0.048 1±0.000 3 | 0.085 4±0.000 4 | 0.299 4±0.001 3 | 
| MFLogLoss | 0.078 5±0.000 3 | 0.054 9±0.000 6 | 0.051 4±0.000 4 | 0.090 0±0.000 4 | 0.310 3±0.001 4 | |
| Multi-VAE | 0.085 8±0.000 3 | 0.059 2±0.000 2 | 0.055 1±0.000 2 | 0.099 4±0.000 2 | 0.331 5±0.001 2 | |
| RoToR | 0.094 1±0.000 3 | 0.075 0±0.000 3 | 0.064 7±0.000 3 | 0.111 9±0.000 4 | 0.367 4±0.001 0 | |
| SVAE(B+P) | 0.087 7±0.000 3 | 0.068 3±0.000 6 | 0.059 5±0.000 4 | 0.102 9±0.000 4 | 0.345 8±0.001 6 | |
| SVAE(B) | 0.098 2±0.000 6 | 0.079 3±0.000 6 | 0.068 5±0.000 5 | 0.118 3±0.000 7 | 0.378 7±0.001 6 | |
| Rec15 | BPR | 0.045 7 | 0.228 6 | 0.076 2 | 0.147 3 | 0.228 6 | 
| MFLogLoss | 0.049 0 | 0.245 1 | 0.081 7 | 0.158 6 | 0.245 1 | |
| Multi-VAE | 0.051 0 | 0.255 2 | 0.085 1 | 0.167 0 | 0.255 2 | |
| RoToR | 0.053 4 | 0.266 9 | 0.089 0 | 0.173 4 | 0.266 9 | |
| SVAE(B+P) | 0.049 7 | 0.248 5 | 0.082 8 | 0.157 0 | 0.248 5 | |
| SVAE(B) | 0.053 3 | 0.266 7 | 0.088 9 | 0.177 1 | 0.266 7 | 
Tab. 3 Experimental results of each model on three datasets
| 数据集 | 方法 | Precision@5 | Recall@5 | F1@5 | NDCG@5 | 1-call@5 | 
|---|---|---|---|---|---|---|
| ML10M | BPR | 0.068 0±0.000 2 | 0.091 5±0.000 3 | 0.065 4±0.000 1 | 0.093 3±0.000 4 | 0.283 7±0.002 3 | 
| MFLogLoss | 0.073 6±0.000 5 | 0.099 5±0.001 0 | 0.070 5±0.000 7 | 0.101 9±0.000 4 | 0.303 4±0.001 7 | |
| Multi-VAE | 0.074 4±0.000 6 | 0.099 6±0.000 9 | 0.070 9±0.000 5 | 0.102 9±0.000 8 | 0.306 2±0.002 3 | |
| RoToR | 0.087 2±0.000 1 | 0.123 9±0.000 7 | 0.085 7±0.000 1 | 0.123 5±0.000 6 | 0.356 2±0.000 8 | |
| SVAE(B+P) | 0.080 4±0.000 5 | 0.114 6±0.000 1 | 0.079 1±0.000 4 | 0.112 6±0.000 6 | 0.331 8±0.001 3 | |
| SVAE(B) | 0.093 2±0.000 5 | 0.137 3±0.000 9 | 0.093 6±0.000 5 | 0.137 1±0.001 0 | 0.374 9±0.002 6 | |
| Netflix | BPR | 0.075 5±0.000 4 | 0.050 3±0.000 5 | 0.048 1±0.000 3 | 0.085 4±0.000 4 | 0.299 4±0.001 3 | 
| MFLogLoss | 0.078 5±0.000 3 | 0.054 9±0.000 6 | 0.051 4±0.000 4 | 0.090 0±0.000 4 | 0.310 3±0.001 4 | |
| Multi-VAE | 0.085 8±0.000 3 | 0.059 2±0.000 2 | 0.055 1±0.000 2 | 0.099 4±0.000 2 | 0.331 5±0.001 2 | |
| RoToR | 0.094 1±0.000 3 | 0.075 0±0.000 3 | 0.064 7±0.000 3 | 0.111 9±0.000 4 | 0.367 4±0.001 0 | |
| SVAE(B+P) | 0.087 7±0.000 3 | 0.068 3±0.000 6 | 0.059 5±0.000 4 | 0.102 9±0.000 4 | 0.345 8±0.001 6 | |
| SVAE(B) | 0.098 2±0.000 6 | 0.079 3±0.000 6 | 0.068 5±0.000 5 | 0.118 3±0.000 7 | 0.378 7±0.001 6 | |
| Rec15 | BPR | 0.045 7 | 0.228 6 | 0.076 2 | 0.147 3 | 0.228 6 | 
| MFLogLoss | 0.049 0 | 0.245 1 | 0.081 7 | 0.158 6 | 0.245 1 | |
| Multi-VAE | 0.051 0 | 0.255 2 | 0.085 1 | 0.167 0 | 0.255 2 | |
| RoToR | 0.053 4 | 0.266 9 | 0.089 0 | 0.173 4 | 0.266 9 | |
| SVAE(B+P) | 0.049 7 | 0.248 5 | 0.082 8 | 0.157 0 | 0.248 5 | |
| SVAE(B) | 0.053 3 | 0.266 7 | 0.088 9 | 0.177 1 | 0.266 7 | 
| 数据集 | 购买记录数∶ 浏览记录数 | 平均物品数 | 稀疏度/% | 最优模型 | 
|---|---|---|---|---|
| ML10M | 1∶13.93 | 60.21 | 0.56 | SVAE(B) | 
| Netflix | 1∶8.70 | 92.01 | 0.52 | SVAE(B) | 
| Rec15 | 1∶1.33 | 10.10 | 0.11 | SVAE(B) | 
Tab. 4 Characteristics of three datasets and model with the optimal recommendation results
| 数据集 | 购买记录数∶ 浏览记录数 | 平均物品数 | 稀疏度/% | 最优模型 | 
|---|---|---|---|---|
| ML10M | 1∶13.93 | 60.21 | 0.56 | SVAE(B) | 
| Netflix | 1∶8.70 | 92.01 | 0.52 | SVAE(B) | 
| Rec15 | 1∶1.33 | 10.10 | 0.11 | SVAE(B) | 
| 数据集 | 方法 | Precision@5 | NDCG@5 | 
|---|---|---|---|
| ML10M | SVAE(alt.) | 0.093 2±0.000 5 | 0.137 1±0.001 0 | 
| SVAE(seq.) | 0.090 1±0.000 7 | 0.132 5±0.001 0 | |
| Netflix | SVAE(alt.) | 0.098 2±0.000 6 | 0.118 3±0.000 7 | 
| SVAE(seq.) | 0.101 1±0.000 6 | 0.121 9±0.000 7 | |
| Rec15 | SVAE(alt.) | 0.053 3 | 0.177 1 | 
| SVAE(seq.) | 0.053 0 | 0.176 4 | 
Tab. 5 Experimental results of SVAE(alt.) and SVAE(seq.) on three datasets
| 数据集 | 方法 | Precision@5 | NDCG@5 | 
|---|---|---|---|
| ML10M | SVAE(alt.) | 0.093 2±0.000 5 | 0.137 1±0.001 0 | 
| SVAE(seq.) | 0.090 1±0.000 7 | 0.132 5±0.001 0 | |
| Netflix | SVAE(alt.) | 0.098 2±0.000 6 | 0.118 3±0.000 7 | 
| SVAE(seq.) | 0.101 1±0.000 6 | 0.121 9±0.000 7 | |
| Rec15 | SVAE(alt.) | 0.053 3 | 0.177 1 | 
| SVAE(seq.) | 0.053 0 | 0.176 4 | 
| 1 | SCHAFER J B, KONSTAN J A, RIEDL J. E-commerce recommendation applications[J]. Data Mining and Knowledge Discovery, 2001, 5(1/2): 115-153. 10.1007/978-1-4615-1627-9_6 | 
| 2 | OORD A V D, DIELEMAN S, SCHRAUWEN B. Deep content-based music recommendation[C]// Proceeding of the 26th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2013: 2643-2651. | 
| 3 | LIU J H, DOLAN P, PEDERSEN E R. Personalized news recommendation based on click behavior[C]// Proceedings of the 15th International Conference on Intelligent User Interfaces. New York: ACM, 2010: 31-40. 10.1145/1719970.1719976 | 
| 4 | PAN R, ZHOU Y H, CAO B, et al. One-class collaborative filtering[C]// Proceedings of the 8th IEEE International Conference on Data Mining. Piscataway: IEEE, 2008: 502-511. 10.1109/icdm.2008.16 | 
| 5 | PAN W K, ZHONG H, XU C F, et al. Adaptive Bayesian personalized ranking for heterogeneous implicit feedbacks[J]. Knowledge-Based Systems, 2015, 73: 173-180. 10.1016/j.knosys.2014.09.013 | 
| 6 | QIU H H, LIU Y, GUO G B, et al. BPRH: Bayesian personalized ranking for heterogeneous implicit feedback[J]. Information Sciences, 2018, 453: 80-98. 10.1016/j.ins.2018.04.027 | 
| 7 | DING J T, YU G H, HE X N, et al. Improving implicit recommender systems with view data[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. [S.l.]: IJCAI Organization, 2018: 3343-3349. 10.24963/ijcai.2018/464 | 
| 8 | PAN W K, LIU M S, MING Z. Transfer learning for heterogeneous one-class collaborative filtering[J]. IEEE Intelligent Systems, 2016, 31(4): 43-49. 10.1109/mis.2016.19 | 
| 9 | PAN W K, YANG Q, CAI W L, et al. Transfer to rank for heterogeneous one-class collaborative filtering[J]. ACM Transactions on Information Systems, 2019, 37(1): No.10. 10.1145/3243652 | 
| 10 | HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering[C]// Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2017: 173-182. 10.1145/3038912.3052569 | 
| 11 | ZHOU M Z, DING Z Y, TANG J L, et al. Micro behaviors: a new perspective in e-commerce recommender systems[C]// Proceedings of the 11th ACM International Conference on Web Search and Data Mining. New York: ACM, 2018: 727-735. 10.1145/3159652.3159671 | 
| 12 | LI Z, ZHAO H K, LIU Q, et al. Learning from history and present: next-item recommendation via discriminatively exploiting user behaviors[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 1734-1743. 10.1145/3219819.3220014 | 
| 13 | SALAKHUTDINOV R R, MNIH A. Probabilistic matrix factorization[C]// Proceeding of the 20th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2007: 1257-1264. 10.1145/1390156.1390267 | 
| 14 | LIANG D W, KRISHNAN R G, HOFFMAN M D, et al. Variational autoencoders for collaborative filtering[C]// Proceedings of the 2018 World Wide Web Conference. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2018: 689-698. 10.1145/3178876.3186150 | 
| 15 | PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359. 10.1109/tkde.2009.191 | 
| 16 | RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]// Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. Arlington, VA: AUAI Press, 2009: 452-461. | 
| 17 | PENG X G, CHEN Y F, DUAN Y C, et al. RBPR: role-based Bayesian personalized ranking for heterogeneous one-class collaborative filtering[C]// Proceedings of the 2016 Workshop on Multi-dimension Information Fusion for Modeling and Personalisation at the 24th ACM Conference on User Modeling, Adaptation and Personalisation. Aachen: CEUR-WS, 2016: 1-4. | 
| 18 | 黄立威,江碧涛,吕守业,等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7): 1619-1647. 10.11897/SP.J.1016.2018.01619 | 
| HUANG L W, JIANG B T, LYU S Y, et al. Survey on deep leaning based recommender systems[J]. Chinese Journal of Computers, 2018, 41(7):1619-1647. 10.11897/SP.J.1016.2018.01619 | |
| 19 | SEDHAIN S, MENON A K, SANNER S, et al. AutoRec: autoencoders meet collaborative filtering[C]// Proceedings of the 24th International Conference on World Wide Web. New York: ACM, 2015:111-112. 10.1145/2740908.2742726 | 
| 20 | WU Y, DuBOIS C, ZHENG A X, et al. Collaborative denoising auto-encoders for top-N recommender systems[C]// Proceedings of the 9th ACM International Conference on Web Search and Data Mining. New York: ACM, 2016: 153-162. 10.1145/2835776.2835837 | 
| 21 | LEE W, SONG K, MOON I C. Augmented variational autoencoders for collaborative filtering with auxiliary information[C]// Proceedings of the 2017 ACM International Conference on Information and Knowledge Management. New York: ACM, 2017: 1139-1148. 10.1145/3132847.3132972 | 
| 22 | PANDEY G, DUKKIPATI A. Variational methods for conditional multimodal deep learning[C]// Proceedings of the 2017 International Joint Conference on Neural Networks. Piscataway: IEEE, 2017: 308-315. 10.1109/ijcnn.2017.7965870 | 
| 23 | SUZUKI M, NAKAYAMA K, MATSUO Y. Joint multimodal learning with deep generative models[EB/OL]. (2016-11-07) [2021-04-03].. | 
| 24 | CUI K N, CHEN X, YAO J C, et al. Variational collaborative learning for user probabilistic representation[EB/OL]. (2018-09-22) [2021-04-03].. 10.1109/icde51399.2021.00051 | 
| 25 | IQBAL M, ARYAFAR K, ANDERTON T. Style conditioned recommendations[C]// Proceedings of the 13th ACM Conference on Recommender Systems. New York: ACM, 2019: 128-136. 10.1145/3298689.3347007 | 
| 26 | BLEI D M, KUCUKELBIR A, McAULIFFE J D. Variational inference: a review for statisticians[EB/OL]. (2018-05-09) [2021-04-03].. 10.1080/01621459.2017.1285773 | 
| 27 | SACHDEVA N, MANCO G, RITACCO E, et al. Sequential variational autoencoders for collaborative filtering[C]// Proceedings of the 12th ACM International Conference on Web Search and Data Mining. New York: ACM, 2019: 600-608. 10.1145/3289600.3291007 | 
| 28 | 翟正利,梁振明,周炜,等. 变分自编码器模型综述[J]. 计算机工程与应用, 2019, 55(3):1-9. 10.3778/j.issn.1002-8331.1810-0284 | 
| ZHAI Z L, LIANG Z M, ZHOU W, et al. Research overview of variational auto-encoders models[J]. Computer Engineering and Applications, 2019, 55(3):1-9. 10.3778/j.issn.1002-8331.1810-0284 | |
| 29 | EBESU T, SHEN B, FANG Y. Collaborative memory network for recommendation systems[C]// Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2018: 515-524. 10.1145/3209978.3209991 | 
| 30 | RICCI F, ROKACH L, SHAPIRA B. Recommender Systems Handbook[M]. 2 ed. Boston: Springer, 2015: 176-199. 10.1007/978-1-4899-7637-6_1 | 
| 31 | McMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. New York: JMLR, 2017: 1273-1282. | 
| 32 | YANG Q, LIU Y, CHEN T J, et al. Federated machine learning: Concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): No.12. 10.1145/3298981 | 
| 33 | 熊平,朱天清,王晓峰. 差分隐私保护及其应用[J]. 计算机学报, 2014, 37(1): 101-122. 10.3724/SP.J.1016.2014.00101 | 
| XIONG P, ZHU T Q, WANG X F. A survey on differential privacy and applications[J]. Chinese Journal of Computers, 2014, 37(1): 101-122. 10.3724/SP.J.1016.2014.00101 | 
| [1] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. | 
| [2] | Feiyu ZHAI, Handa MA. Hybrid classical-quantum classification model based on DenseNet [J]. Journal of Computer Applications, 2024, 44(6): 1905-1910. | 
| [3] | Wangjun SHI, Jing WANG, Xiaojun NING, Youfang LIN. Sleep stage classification model by meta transfer learning in few-shot scenarios [J]. Journal of Computer Applications, 2024, 44(5): 1445-1451. | 
| [4] | Hongtian LI, Xinhao SHI, Weiguo PAN, Cheng XU, Bingxin XU, Jiazheng YUAN. Few-shot object detection via fusing multi-scale and attention mechanism [J]. Journal of Computer Applications, 2024, 44(5): 1437-1444. | 
| [5] | Haoran WANG, Dan YU, Yuli YANG, Yao MA, Yongle CHEN. Domain transfer intrusion detection method for unknown attacks on industrial control systems [J]. Journal of Computer Applications, 2024, 44(4): 1158-1165. | 
| [6] | Zongyu LI, Siwei QIANG, Xiaobo GUO, Zhenfeng ZHU. Re-weighted adversarial variational autoencoder and its application in industrial causal effect estimation [J]. Journal of Computer Applications, 2024, 44(4): 1099-1106. | 
| [7] | Li ZENG, Jingru YANG, Gang HUANG, Xiang JING, Chaoran LUO. Survey on hypergraph application methods: issues, advances, and challenges [J]. Journal of Computer Applications, 2024, 44(11): 3315-3326. | 
| [8] | Qiujie LIU, Yuan WAN, Jie WU. Deep bi-modal source domain symmetrical transfer learning for cross-modal retrieval [J]. Journal of Computer Applications, 2024, 44(1): 24-31. | 
| [9] | Kezheng CHEN, Xiaoran GUO, Yong ZHONG, Zhenping LI. Relation extraction method based on negative training and transfer learning [J]. Journal of Computer Applications, 2023, 43(8): 2426-2430. | 
| [10] | Zexi JIN, Lei LI, Ji LIU. Transfer learning model based on improved domain separation network [J]. Journal of Computer Applications, 2023, 43(8): 2382-2389. | 
| [11] | Yuan LIU, Yongquan DONG, Rui JIA, Haolin YANG. Hierarchical and phased attention network model for personalized course recommendation [J]. Journal of Computer Applications, 2023, 43(8): 2358-2363. | 
| [12] | Bona XUAN, Jin LI, Yafei SONG, Zexuan MA. Malicious code classification method based on improved MobileNetV2 [J]. Journal of Computer Applications, 2023, 43(7): 2217-2225. | 
| [13] | Huibin ZHANG, Liping FENG, Yaojun HAO, Yining WANG. Ancient mural dynasty identification based on attention mechanism and transfer learning [J]. Journal of Computer Applications, 2023, 43(6): 1826-1832. | 
| [14] | Hao SUN, Jian CAO, Haisheng LI, Dianhui MAO. Session-based recommendation model based on enhanced capsule network [J]. Journal of Computer Applications, 2023, 43(4): 1043-1049. | 
| [15] | Qing JIA, Laihua WANG, Weisheng WANG. Anomaly detection in video via independently recurrent neural network and variational autoencoder network [J]. Journal of Computer Applications, 2023, 43(2): 507-513. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||