Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (12): 3708-3714.DOI: 10.11772/j.issn.1001-9081.2021101723
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Dan HE1, Xiping HE1,2(), Yue LI1, Rui YUAN1, Yuanyuan NIU1
Received:
2021-10-08
Revised:
2021-12-14
Accepted:
2021-12-23
Online:
2021-12-31
Published:
2022-12-10
Contact:
Xiping HE
About author:
HE Dan,born in 1997, M. S. candidate. Her research interests include computer vision, deep learning, liveness detection.Supported by:
通讯作者:
何希平
作者简介:
贺丹(1997—),女,湖南涟源人,硕士研究生,主要研究方向:计算机视觉、深度学习、活体检测基金资助:
CLC Number:
Dan HE, Xiping HE, Yue LI, Rui YUAN, Yuanyuan NIU. Face anti-spoofing method based on regional blocking and lightweight network[J]. Journal of Computer Applications, 2022, 42(12): 3708-3714.
贺丹, 何希平, 李悦, 袁锐, 牛园园. 基于区域分块和轻量级网络的人脸反欺骗方法[J]. 《计算机应用》唯一官方网站, 2022, 42(12): 3708-3714.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021101723
数据集 | 年份 | 对象数 | 样本数 (V/I) | 攻击 类型 | 模态 |
---|---|---|---|---|---|
RA | 2012 | 50 | 1 200(V) | Pr,Re | RGB |
CF | 2012 | 50 | 600(V) | Pr,Re | RGB |
CASIA-SURF | 2018 | 1 000 | 21 000(V) | Pr,Cu | RGB/Depth/IR |
Tab. 1 Experimental datasets
数据集 | 年份 | 对象数 | 样本数 (V/I) | 攻击 类型 | 模态 |
---|---|---|---|---|---|
RA | 2012 | 50 | 1 200(V) | Pr,Re | RGB |
CF | 2012 | 50 | 600(V) | Pr,Re | RGB |
CASIA-SURF | 2018 | 1 000 | 21 000(V) | Pr,Cu | RGB/Depth/IR |
图像 尺寸 | CF/RA | CASIA-SURF(Depth) | ||
---|---|---|---|---|
EER | HTER | ACC | ACER | |
32×32 | 0.0 | 0.0 | 98.25 | 1.738 7 |
48×48 | 0.0 | 0.0 | 99.20 | 0.703 6 |
64×64 | 0.0 | 0.0 | 99.50 | 0.548 3 |
80×80 | 0.0 | 0.0 | 99.42 | 0.493 9 |
96×96 | 0.0 | 0.0 | 99.49 | 0.458 0 |
112×112 | 0.0 | 0.0 | 99.37 | 0.664 6 |
Tab.2 Experimental results of different image sizes within datasets as network input
图像 尺寸 | CF/RA | CASIA-SURF(Depth) | ||
---|---|---|---|---|
EER | HTER | ACC | ACER | |
32×32 | 0.0 | 0.0 | 98.25 | 1.738 7 |
48×48 | 0.0 | 0.0 | 99.20 | 0.703 6 |
64×64 | 0.0 | 0.0 | 99.50 | 0.548 3 |
80×80 | 0.0 | 0.0 | 99.42 | 0.493 9 |
96×96 | 0.0 | 0.0 | 99.49 | 0.458 0 |
112×112 | 0.0 | 0.0 | 99.37 | 0.664 6 |
增强方案 | CASIA-SURF(Depth) | ||
---|---|---|---|
ACC/% | ACER/% | ||
局部图像 (96×96) | 不增强 | 99.19 | 0.716 8 |
方案一 | 99.22 | 0.663 6 | |
方案二 | 99.25 | 0.643 7 | |
方案三 | 99.38 | 0.539 1 | |
方案四 | 99.49 | 0.458 0 | |
全脸图像 (112×112) | 不增强 | 99.09 | 0.936 0 |
方案五 | 99.37 | 0.664 6 |
Tab. 3 Comparison of experimental results of using different data enhancement schemes within dataset
增强方案 | CASIA-SURF(Depth) | ||
---|---|---|---|
ACC/% | ACER/% | ||
局部图像 (96×96) | 不增强 | 99.19 | 0.716 8 |
方案一 | 99.22 | 0.663 6 | |
方案二 | 99.25 | 0.643 7 | |
方案三 | 99.38 | 0.539 1 | |
方案四 | 99.49 | 0.458 0 | |
全脸图像 (112×112) | 不增强 | 99.09 | 0.936 0 |
方案五 | 99.37 | 0.664 6 |
类型 | 数据集 | 模块 | 评价指标 | ||||||
---|---|---|---|---|---|---|---|---|---|
CDC | DWCDCGM | SE1 | SE2 | 参数量/MB | ACER/% | ACC/% | HTER/% | ||
数据集内部 | CASIA-SURF(Depth) | √ | 0.316 5 | 0.690 2 | 99.15 | ||||
√ | √ | 0.232 9 | 0.788 4 | 99.25 | |||||
√ | √ | √ | √ | 0.258 2 | 0.458 0 | 99.49 | |||
跨数据集测试 | CF训练RA测试 | √ | 70.18 | 29.82 | |||||
√ | √ | √ | 72.25 | 24.45 | |||||
√ | √ | 78.56 | 21.42 | ||||||
√ | √ | √ | 84.35 | 15.61 | |||||
√ | √ | √ | √ | 85.23 | 14.78 |
Tab. 4 Ablation experimental results of different modules in LightFASNet architecture
类型 | 数据集 | 模块 | 评价指标 | ||||||
---|---|---|---|---|---|---|---|---|---|
CDC | DWCDCGM | SE1 | SE2 | 参数量/MB | ACER/% | ACC/% | HTER/% | ||
数据集内部 | CASIA-SURF(Depth) | √ | 0.316 5 | 0.690 2 | 99.15 | ||||
√ | √ | 0.232 9 | 0.788 4 | 99.25 | |||||
√ | √ | √ | √ | 0.258 2 | 0.458 0 | 99.49 | |||
跨数据集测试 | CF训练RA测试 | √ | 70.18 | 29.82 | |||||
√ | √ | √ | 72.25 | 24.45 | |||||
√ | √ | 78.56 | 21.42 | ||||||
√ | √ | √ | 84.35 | 15.61 | |||||
√ | √ | √ | √ | 85.23 | 14.78 |
数据集 | 方法 | EER | HTER |
---|---|---|---|
CF | SPP5-7-14[ | 0.37 | — |
文献[ | 2.36 | — | |
LBP+WLD[ | 2.62 | 2.14 | |
Auxilliary[ | — | 1.10 | |
文献[ | 0.11 | — | |
本文方法 | 0.00 | 0.00 | |
RA | SPP5-7-14[ | 0.00 | 0.50 |
文献[ | 0.06 | 0.18 | |
文献[ | 0.10 | 0.90 | |
LBP+WLD[ | 0.53 | 0.69 | |
文献[ | 0.06 | — | |
本文方法 | 0.00 | 0.00 |
Tab. 5 Comparison of experimental results of different methods on CF and RA datasets
数据集 | 方法 | EER | HTER |
---|---|---|---|
CF | SPP5-7-14[ | 0.37 | — |
文献[ | 2.36 | — | |
LBP+WLD[ | 2.62 | 2.14 | |
Auxilliary[ | — | 1.10 | |
文献[ | 0.11 | — | |
本文方法 | 0.00 | 0.00 | |
RA | SPP5-7-14[ | 0.00 | 0.50 |
文献[ | 0.06 | 0.18 | |
文献[ | 0.10 | 0.90 | |
LBP+WLD[ | 0.53 | 0.69 | |
文献[ | 0.06 | — | |
本文方法 | 0.00 | 0.00 |
方法 | ACC/% | ACER/% | 参数量/MB | FLOPs/G | 预测 时间/s |
---|---|---|---|---|---|
ResNet18 | 96.42 | 3.320 9 | 1.072 9 | 1.455 2 | 0.062 2 |
ShuffleNetV2 | 98.63 | 1.426 9 | 0.917 9 | 0.555 0 | 0.036 3 |
MobileNetV2 | 98.58 | 1.330 4 | 2.143 5 | 0.055 5 | 0.011 3 |
FeatherNetA | 99.12 | 0.913 4 | 0.345 3 | 0.014 7 | 0.007 7 |
FeatherNetB | 99.20 | 0.757 2 | 0.351 2 | 0.015 3 | 0.007 8 |
本文方法 | 99.49 | 0.458 0 | 0.258 2 | 0.024 2 | 0.008 3 |
Tab. 6 Comparison of experimental results of different methods on CASIA-SURF (Depth) dataset
方法 | ACC/% | ACER/% | 参数量/MB | FLOPs/G | 预测 时间/s |
---|---|---|---|---|---|
ResNet18 | 96.42 | 3.320 9 | 1.072 9 | 1.455 2 | 0.062 2 |
ShuffleNetV2 | 98.63 | 1.426 9 | 0.917 9 | 0.555 0 | 0.036 3 |
MobileNetV2 | 98.58 | 1.330 4 | 2.143 5 | 0.055 5 | 0.011 3 |
FeatherNetA | 99.12 | 0.913 4 | 0.345 3 | 0.014 7 | 0.007 7 |
FeatherNetB | 99.20 | 0.757 2 | 0.351 2 | 0.015 3 | 0.007 8 |
本文方法 | 99.49 | 0.458 0 | 0.258 2 | 0.024 2 | 0.008 3 |
方法 | HTER/% | |
---|---|---|
CF训练RA测试 | RA训练CF测试 | |
STASN[ | 31.5 | 30.9 |
文献[ | 30.0 | 32.1 |
CDCN[ | 15.5 | 32.6 |
Auxilliary[ | 27.6 | 28.4 |
3DPC-Net[ | 23.4 | 25.7 |
文献[ | 17.0 | 22.8 |
本文方法 | 14.8 | 33.3 |
Tab.7 Comparison of experimental results of different methods for cross test on CF and RA datasets
方法 | HTER/% | |
---|---|---|
CF训练RA测试 | RA训练CF测试 | |
STASN[ | 31.5 | 30.9 |
文献[ | 30.0 | 32.1 |
CDCN[ | 15.5 | 32.6 |
Auxilliary[ | 27.6 | 28.4 |
3DPC-Net[ | 23.4 | 25.7 |
文献[ | 17.0 | 22.8 |
本文方法 | 14.8 | 33.3 |
1 | BOULKENAFET Z, KOMULAINEN J, HADID A. On the generalization of color texture-based face anti-spoofing[J]. Image and Vision Computing, 2018, 77: 1-9. 10.1016/j.imavis.2018.04.007 |
2 | BOULKENAFET Z, KOMULAINEN J, HADID A. Face antispoofing using speeded-up robust features and Fisher vector encoding[J]. IEEE Signal Processing Letters, 2017, 24(2): 141-145. |
3 | SINGH A K, JOSHI P, NANDI G C. Face recognition with liveness detection using eye and mouth movement[C]// Proceedings of the 2014 International Conference on Signal Propagation and Computer Technology. Piscataway: IEEE, 2014: 592-597. 10.1109/icspct.2014.6884911 |
4 | WANG Y, NIAN F D, LI T, et al. Robust face anti-spoofing with depth information[J]. Journal of Visual Communication and Image Representation, 2017, 49: 332-337. 10.1016/j.jvcir.2017.09.002 |
5 | LI X B, KOMULAINEN J, ZHAO G Y, et al. Generalized face anti-spoofing by detecting pulse from face videos[C]// Proceedings of the 23rd International Conference on Pattern Recognition. Piscataway: IEEE, 2016: 4244-4249. 10.1109/icpr.2016.7900300 |
6 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
7 | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2261-2269. 10.1109/cvpr.2017.243 |
8 | SANDLER M, HOWRD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018:4510-4520. 10.1109/cvpr.2018.00474 |
9 | WANG Z Z, YU Z T, ZHAO C X, et al. Deep spatial gradient and temporal depth learning for face anti-spoofing[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020:5041-5050. 10.1109/cvpr42600.2020.00509 |
10 | ZHANG P, ZOU F H, WU Z W, et al. FeatherNets: convolutional neural networks as light as feather for face anti-spoofing[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1574-1583. 10.1109/cvprw.2019.00199 |
11 | YU Z T, ZHAO C X, WANG Z Z, et al. Searching central difference convolutional networks for face anti-spoofing[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5294-5304. 10.1109/cvpr42600.2020.00534 |
12 | BRENDEL W, BETHGE M. Approximating CNNs with bag-of-local-features models works surprisingly well on ImageNet[EB/OL]. (2019-03-20) [2021-12-08].. |
13 | SHEN T, HUANG Y Y, TONG Z J. FaceBagNet: bag-of-local-features model for multi-modal face anti-spoofing[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2019: 1611-1616. 10.1109/cvprw.2019.00203 |
14 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 10.1109/cvpr.2018.00745 |
15 | MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11218. Cham: Springer, 2018:122-138. |
16 | HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1577-1586. 10.1109/cvpr42600.2020.00165 |
17 | CHINGOVSKA I, ANJOS A, MARCEL S. On the effectiveness of local binary patterns in face anti-spoofing[C]// Proceedings of the 2012 International Conference of Biometrics Special Interest Group. Piscataway: IEEE, 2012:1-7. |
18 | ZHANG Z W, YAN J J, LIU S F, et al. A face antispoofing database with diverse attacks[C]// Proceedings of the 5th IAPR International Conference on Biometrics. Piscataway: IEEE, 2012: 26-31. 10.1109/icb.2012.6199754 |
19 | ZHANG S F, WANG X B, LIU A J, et al. A dataset and benchmark for large-scale multi-modal face anti-spoofing[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 919-928. 10.1109/cvpr.2019.00101 |
20 | SHI L, ZHOU Z, GUO Z H. Face anti-spoofing using spatial pyramid pooling[C]// Proceedings of the 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 2126-2133. 10.1109/icpr48806.2021.9412407 |
21 | CHEN H N, CHEN Y W, TIAN X, et al. A cascade face spoofing detector based on face anti-spoofing R-CNN and improved Retinex LBP[J]. IEEE Access, 2019, 7: 170116-170133. 10.1109/access.2019.2955383 |
22 | KHAMMARI M. Robust face anti-spoofing using CNN with LBP and WLD[J]. IET Image Processing, 2019, 13(11): 1880-1884. 10.1049/iet-ipr.2018.5560 |
23 | LIU Y J, JOURABLOO A, LIU X M. Learning deep models for face anti-spoofing: binary or auxiliary supervision[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 389-398. 10.1109/cvpr.2018.00048 |
24 | 栾晓,李晓双. 基于多特征融合的人脸活体检测算法[J]. 计算机科学, 2021, 48(11A):409-415. 10.11896/jsjkx.210100181 |
LUAN X, LI X S. Face anti-spoof algorithm based on multi-feature fusion[J]. Computer Science, 2021, 48(11A):409-415. 10.11896/jsjkx.210100181 | |
25 | LI L, FENG X Y, JIANG X Y, et al. Face anti-spoofing via deep local binary pattern[C]// Proceedings of the 2017 IEEE International Conference on Image Processing. Piscataway: IEEE, 2017: 101-105. 10.1109/icip.2017.8296251 |
26 | YANG X, LUO W H, BAO L C, et al. Face anti-spoofing: model matters, so does data[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3502-3511. 10.1109/cvpr.2019.00362 |
27 | LI X, WAN J, JIN Y, et al. 3DPC-Net: 3D point cloud network for face anti-spoofing[C]// Proceedings of the 2020 IEEE International Joint Conference on Biometrics. Piscataway: IEEE, 2020: 1-8. 10.1109/ijcb48548.2020.9304873 |
[1] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. |
[2] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[3] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[4] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[5] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[6] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[7] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[8] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[9] | Hong CHEN, Bing QI, Haibo JIN, Cong WU, Li’ang ZHANG. Class-imbalanced traffic abnormal detection based on 1D-CNN and BiGRU [J]. Journal of Computer Applications, 2024, 44(8): 2493-2499. |
[10] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. |
[11] | Dongwei WANG, Baichen LIU, Zhi HAN, Yanmei WANG, Yandong TANG. Deep network compression method based on low-rank decomposition and vector quantization [J]. Journal of Computer Applications, 2024, 44(7): 1987-1994. |
[12] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[13] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. |
[14] | Yangyi GAO, Tao LEI, Xiaogang DU, Suiyong LI, Yingbo WANG, Chongdan MIN. Crowd counting and locating method based on pixel distance map and four-dimensional dynamic convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2233-2242. |
[15] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||