Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (2): 385-390.DOI: 10.11772/j.issn.1001-9081.2022010056
• Artificial intelligence • Previous Articles
Feng XIANG1,2, Zhongzhi LI1,2(), Xi XIONG1,2, Binyong LI1,2
Received:
2022-01-17
Revised:
2022-04-06
Accepted:
2022-04-11
Online:
2022-04-21
Published:
2023-02-10
Contact:
Zhongzhi LI
About author:
XIANG Feng, born in 1998, M. S. candidate. His research interests include machine learning, data analysis.Supported by:
向峰1,2, 李中志1,2(), 熊熙1,2, 李斌勇1,2
通讯作者:
李中志
作者简介:
向峰(1998—),男,湖南怀化人,硕士研究生,主要研究方向:机器学习、数据分析基金资助:
CLC Number:
Feng XIANG, Zhongzhi LI, Xi XIONG, Binyong LI. Inverse distance weight interpolation algorithm based on particle swarm local optimization[J]. Journal of Computer Applications, 2023, 43(2): 385-390.
向峰, 李中志, 熊熙, 李斌勇. 粒子群局部优化的反距离权重插值算法[J]. 《计算机应用》唯一官方网站, 2023, 43(2): 385-390.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022010056
算法 | RMSE | MAPE | MAE | MAX |
---|---|---|---|---|
IDW | 10.630 | 31.07 | 6.501 | 49.28 |
Kriging | 11.050 | 33.24 | 7.053 | 46.96 |
SARNN | 9.975 | 19.92 | 7.572 | 40.37 |
PIDW | 10.220 | 29.93 | 6.289 | 45.91 |
PLIDW | 9.722 | 28.22 | 6.054 | 46.54 |
Tab. 1 Results of simulation experiments
算法 | RMSE | MAPE | MAE | MAX |
---|---|---|---|---|
IDW | 10.630 | 31.07 | 6.501 | 49.28 |
Kriging | 11.050 | 33.24 | 7.053 | 46.96 |
SARNN | 9.975 | 19.92 | 7.572 | 40.37 |
PIDW | 10.220 | 29.93 | 6.289 | 45.91 |
PLIDW | 9.722 | 28.22 | 6.054 | 46.54 |
算法 | 参考点数目 | |||||
---|---|---|---|---|---|---|
20 | 40 | 60 | 80 | 100 | 120 | |
IDW | 5.604 | 5.295 | 4.348 | 5.814 | 5.424 | 5.144 |
Kriging | 3.468 | 5.467 | 4.247 | 6.504 | 5.869 | 5.847 |
SARNN | 3.045 | 3.627 | 4.012 | 6.129 | 5.895 | 4.670 |
PIDW | 4.077 | 5.293 | 4.540 | 5.597 | 5.449 | 5.437 |
PLIDW | 5.711 | 6.026 | 4.803 | 5.831 | 5.800 | 6.285 |
Tab. 2 Experimental results of meteorological element data
算法 | 参考点数目 | |||||
---|---|---|---|---|---|---|
20 | 40 | 60 | 80 | 100 | 120 | |
IDW | 5.604 | 5.295 | 4.348 | 5.814 | 5.424 | 5.144 |
Kriging | 3.468 | 5.467 | 4.247 | 6.504 | 5.869 | 5.847 |
SARNN | 3.045 | 3.627 | 4.012 | 6.129 | 5.895 | 4.670 |
PIDW | 4.077 | 5.293 | 4.540 | 5.597 | 5.449 | 5.437 |
PLIDW | 5.711 | 6.026 | 4.803 | 5.831 | 5.800 | 6.285 |
1 | 李海涛,邵泽东. 空间插值分析算法综述[J]. 计算机系统应用, 2019, 28(7):1-8. 10.15888/j.cnki.csa.006988 |
LI H T, SHAO Z D. Review of spatial interpolation analysis algorithm[J]. Computer Systems and Applications, 2019, 28(7): 1-8. 10.15888/j.cnki.csa.006988 | |
2 | QIAO P W, LI P Z, CHENG Y J, et al. Comparison of common spatial interpolation methods for analyzing pollutant spatial distributions at contaminated sites[J]. Environmental Geochemistry and Health, 2019, 41(6): 2709-2730. 10.1007/s10653-019-00328-0 |
3 | 范玉洁,余新晓,张红霞,等. 降雨资料Kriging与IDW插值对比分析——以漓江流域为例[J]. 水文, 2014, 34(6):61-66. 10.3969/j.issn.1000-0852.2014.06.011 |
FAN Y J, YU X X, ZHANG H X, et al. Comparison between Kirging interpolation method and inverse distance weighting tension for precipitation data analysis: taking Lijiang River Basin as a study case[J]. Journal of China Hydrology, 2014, 34(6): 61-66. 10.3969/j.issn.1000-0852.2014.06.011 | |
4 | 曹端广,张子民,王海,等. 顾及风向和风速的气温空间插值方法[J]. 地理与地理信息科学, 2021, 37(1):47-52. 10.3969/j.issn.1672-0504.2021.01.008 |
CAO D G, ZHANG Z M, WANG H, et al. A method of spatial interpolation of air temperature considering wind direction and speed[J]. Geography and Geo-Information Science, 2021, 37(1): 47-52. 10.3969/j.issn.1672-0504.2021.01.008 | |
5 | 刘昕,辛存林. 陕甘宁地区城市空气质量特征及影响因素分析[J]. 环境科学研究, 2019, 32(12):2065-2074. |
LIU X, XIN C L. Analysis of urban air quality characteristics and influencing factors in Shaanxi Gansu-Ningxia region[J]. Research of Environmental Sciences, 2019, 32(12): 2065-2074. | |
6 | 王衍斐,陈锁忠,都娥娥,等. GIS技术在突发性土壤污染事故应急监测中的应用[J]. 计算机应用, 2010, 30(S2):288-291. |
WANG Y F, CHEN S Z, DU E E, et al. Application of GIS technology in emergency monitoring of sudden soil pollution accidents[J]. Journal of Computer Applications, 2010, 30(S2): 288-291. | |
7 | 安永龙,万利勤,李霞,等. 承德市土壤重金属空间结构与分布特征[J]. 水文地质工程地质, 2020, 47(6):119-131. |
AN Y L, WAN L Q, LI X, et al. Spatial structure and distribution characteristics of heavy metals in the soil in Chengde[J]. Hydrogeology and Engineering Geology, 2020, 47(6): 119-131. | |
8 | 胡广义,张秋文,张勇传. 基于BP人工神经网络的分布式降雨量插值估算[J]. 华中科技大学学报(自然科学版), 2009, 37(4):107-110. |
HU G Y, ZHANG Q W, ZHANG Y C. Distributed rainfall interpolation using BPANN[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2009, 37(4): 107-110. | |
9 | 陈飞香,程家昌,胡月明,等. 基于RBF神经网络的土壤铬含量空间预测[J]. 地理科学, 2013, 33(1):69-74. |
CHEN F X, CHENG J C, HU Y M, et al. Spatial prediction of soil properties by RBF neural network[J]. Scientia Geographica Sinica, 2013, 33(1): 69-74. | |
10 | 杜景林,沈晓燕. 基于改进型K-means聚类的温度插值算法[J]. 计算机工程与设计, 2016, 37(11):2992-2998. |
DU J L, SHEN X Y. Temperature interpolation algorithm based on improved K-means clustering algorithm[J]. Computer Engineering and Design, 2016, 37(11): 2992-2998. | |
11 | 曾金迪,张丰,吴森森,等. 基于空间自回归神经网络模型的空间插值研究[J]. 浙江大学学报(理学版), 2020, 47(5):572-581. |
ZENG J D, ZHANG F, WU S S, et al. Spatial interpolation based on spatial auto-regressive neural network[J]. Journal of Zhejiang University (Science Edition), 2020, 47(5): 572-581. | |
12 | MA J, DING Y X, CHENG J C P, et al. A temporal-spatial interpolation and extrapolation method based on geographic long short-term memory neural network for PM2.5[J]. Journal of Cleaner Production, 2019, 237: No.117729. 10.1016/j.jclepro.2019.117729 |
13 | ZHU D, CHENG X M, ZHANG F, et al. Spatial interpolation using conditional generative adversarial neural networks[J]. International Journal of Geographical Information Science, 2020, 34(4): 735-758. 10.1080/13658816.2019.1599122 |
14 | 张锦明,游雄,万刚. DEM插值参数优选的试验研究[J]. 测绘学报, 2014, 43(2):178-185, 192. |
ZHANG J M, YOU X, WAN G. Experimental research on optimization of DEM interpolation parameters[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(2): 178-185, 192. | |
15 | 李正泉,吴尧祥. 顾及方向遮蔽性的反距离权重插值法[J]. 测绘学报, 2015, 44(1):91-98. 10.11947/j.AGCS.2015.20130349 |
LI Z Q, WU Y X. Inverse distance weighted interpolation involving position shading[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(1): 91-98. 10.11947/j.AGCS.2015.20130349 | |
16 | GREENBERG J A, RUEDA C, HESTIR E L, et al. Least cost distance analysis for spatial interpolation[J]. Computers and Geosciences, 2011, 37(2):272-276. 10.1016/j.cageo.2010.05.012 |
17 | 李慧晴,叶爱中. 基于地形加权的降水空间插值方法研究[J]. 武汉大学学报(工学版), 2021, 54(1):28-37. |
LI H Q, YE A Z. Spatial interpolation method of precipitation based on topographic weighting[J]. Engineering Journal of Wuhan University, 2021, 54(1): 28-37. | |
18 | WANG J F, CHRISTAKOS G, HU M G, et al. Modeling spatial means of surfaces with stratified nonhomogeneity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(12):4167-4174. 10.1109/tgrs.2009.2023326 |
19 | 颜金彪,段晓旗,郑文武,等. 顾及空间异质性的自适应IDW插值算法[J]. 武汉大学学报(信息科学版), 2020, 45(1):97-104. |
YAN J B, DUAN X Q, ZHENG W W, et al. An adaptive IDW algorithm involving spatial heterogeneity[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 97‑104. | |
20 | 孙梦楠,刘少华,刘京城. 顾及空间各向异性的IDW插值算法[J]. 计算机工程与设计, 2020, 41(4):983-987. |
SUN M N, LIU S H, LIU J C. IDW interpolation algorithm considering spatial anisotropy[J]. Computer Engineering and Design, 2020, 41(4): 983-987. | |
21 | 颜金彪,吴波,何清华. 顾及各向异性的多参数协同优化IDW插值方法[J]. 测绘学报, 2021, 50(5):675-684. |
YAN J B, WU B, HE Q H. An anisotropic IDW interpolation method with multiple parameters cooperative optimization[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5): 675-684. | |
22 | 张均,叶庆卫. 基于PSO的改进AdaBoost人脸检测算法[J]. 计算机应用, 2020, 40(S1):61-64. |
ZHANG J, YE Q W. Improved AdaBoost face detection algorithm based on particle swarm optimization[J]. Journal of Computer Applications, 2020, 40(S1): 61-64. | |
23 | 熊志斌. 基于改进粒子群模糊神经网络的信用评估[J]. 统计与决策, 2019, 35(5):55-58. |
XIONG Z B. Credit evaluation based on improved particle swarm fuzzy neural network[J]. Statistics and Decision, 2019, 35(5): 55-58. | |
24 | HUANG X Y, XIANG C. Peak density algorithm based on KD-tree optimization[J]. Journal of Physics: Conference Series, 2021, 1955: No.012042. 10.1088/1742-6596/1955/1/012042 |
25 | FERNÁNDEZ JARAMILLO J M, MAYERLE R. Sample selection via angular distance in the space of the arguments of an artificial neural network[J]. Computers and Geosciences, 2018, 114: 98-106. 10.1016/j.cageo.2018.02.003 |
26 | CARLISLE A, DOZIER G. An off-the-shelf PSO[EB/OL]. [2021-02-12].. |
[1] | Bing GAO, Ya ZHENG, Jing QIN, Qijie ZOU, Zumin WANG. Network intrusion detection algorithm based on sparrow search algorithm and improved particle swarm optimization algorithm [J]. Journal of Computer Applications, 2022, 42(4): 1201-1206. |
[2] | Fangxin NIE, Yujia WANG, Xin JIA. Teaching and learning information interactive particle swarm optimization algorithm [J]. Journal of Computer Applications, 2022, 42(3): 874-882. |
[3] | Jing ZHANG, Aihong ZHU. Optimization method of automatic train operation speed curve based on genetic algorithm and particle swarm optimization [J]. Journal of Computer Applications, 2022, 42(2): 599-605. |
[4] | ZHANG Meng, GUO Jianquan. Channel structure choice of closed-loop supply chain under uncertain demand and recovery [J]. Journal of Computer Applications, 2021, 41(7): 2100-2107. |
[5] | FAN Xiaomao, XIONG Honglin, ZHAO Gansen. Cleaning scheduling model with constraints and its solution [J]. Journal of Computer Applications, 2021, 41(2): 577-582. |
[6] | LUO Bin, YU Bo. Computation offloading strategy based on particle swarm optimization in mobile edge computing [J]. Journal of Computer Applications, 2020, 40(8): 2293-2298. |
[7] | ZHOU Wenfeng, LIANG Xiaolei, TANG Kexin, LI Zhanghong, FU Xiuwen. Hybrid particle swarm optimization algorithm with topological time-varying and search disturbance [J]. Journal of Computer Applications, 2020, 40(7): 1913-1918. |
[8] | HUO Qingqing, GUO Jianquan. Multi-objective closed-loop logistics network model of fresh foods based on improved genetic algorithm [J]. Journal of Computer Applications, 2020, 40(5): 1494-1500. |
[9] | LI He, JIANG Dengying, HUANG Zhangcan, WANG Zhanzhan. Method for solving color images quantization problem of color images [J]. Journal of Computer Applications, 2019, 39(9): 2646-2651. |
[10] | HE Hailin, ZHENG Jianbin, YU Fangli, YU Lie, ZHAN Enqi. Exoskeleton robot gait detection based on improved whale optimization algorithm [J]. Journal of Computer Applications, 2019, 39(7): 1905-1911. |
[11] | YANG Xiaohua, GUO Jianquan. Multi-period multi-decision closed-loop logistics network for fresh products with fuzzy variables [J]. Journal of Computer Applications, 2019, 39(7): 2168-2174. |
[12] | SHI Lili, XIA Kewen, DAI Shuidong, JU Wenzhe. Optimal design of energy storage spring in circuit breaker based on improved particle swarm optimization algorithm [J]. Journal of Computer Applications, 2019, 39(5): 1540-1546. |
[13] | CHEN Wanzhi, XU Dongsheng, ZHANG Jing, TANG Yu. Intrusion detection method for industrial control system with optimized support vector machine and K-means++ [J]. Journal of Computer Applications, 2019, 39(4): 1089-1094. |
[14] | YUAN Xiaoping, JIANG Shuo. Improved particle swarm optimization algorithm based on hierarchical autonomous learning [J]. Journal of Computer Applications, 2019, 39(1): 148-153. |
[15] | ZHAO Wenfang, WANG Jingli, SHANG Min, LIU Yanan. Forecasting model of pollen concentration based on particle swarm optimization and support vector machine [J]. Journal of Computer Applications, 2019, 39(1): 98-104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||