[1] EBERHART R,KENNEDY J. A new optimizer using particle swarm theory[C]//Proceedings of the 6th International Symposium on Micro Machine and Human Science. Piscataway:IEEE,1995:39-43. [2] KENNEDY J,EBERHART R. Particle swarm optimization[C]//Proceedings of the 1995 International Conference on Neural Networks. Piscataway:IEEE,1995:942-1948. [3] 张艺瀛, 金志刚. 一种高维多模态优化的量子粒子群优化算法[J]. 哈尔滨工业大学学报,2018,50(11):50-58,82. (ZHANG Y Y,JIN Z G. Quantum particle swarm optimization algorithm for high-dimensional multimodal optimization[J]. Journal of Harbin University of Technology,2018,50(11):50-58,82.) [4] 翟亚飞, 樊坤, 王蒙, 等. 求解混合多处理机任务作业车间调度的改进粒子群算法[J]. 小型微型计算机系统,2018,39(9):2107-2113.(ZHAI Y F,FAN K,WANG M,et al. Improved particle swarm optimization algorithm for solving hybrid job-shop scheduling with multiprocessor task[J]. Journal of Chinese Computer Systems,2018,39(9):2107-2113.) [5] 范厚明, 刘文琪, 徐振林, 等. 混合粒子群算法求解带软时间窗的VRPSPD问题[J]. 计算机工程与应用,2018,54(19):221-229.(FAN H M,LIU W Q,XU Z L,et al. Hybrid particle swarm optimization for solving VRPSPD problems with soft time windows[J]. Computer Engineering and Applications,2018,54(19):221-229.) [6] 刘宁庆, 管春萌, 张文彬. 一种用于空间调制信号检测的改进粒子群算法[J]. 哈尔滨工业大学学报,2015,47(11):41-46. (LIU N Q,GUAN C M,ZHANG W B. An improved particle swarm optimization algorithm for signal detection in spatial modulation system[J]. Journal of Harbin University of Technology,2015,47(11):41-46.) [7] 刘明, 董明刚, 敬超. 基于定期竞争学习的多目标粒子群优化算法[J]. 计算机应用,2019,39(2):330-335. (LIU M,DONG M G,JING C. Scheduled competition learning based multi-objective particle swarm optimization algorithm[J]. Journal of Computer Applications,2019,39(2):330-335.) [8] 张鑫, 邹德旋, 沈鑫. 含交叉项的混合二范数粒子群优化算法[J]. 计算机应用,2018,38(8):2148-2156,2163. (ZHANG X, ZOU D X,SHEN X. Hybrid two-norm particle swarm optimization algorithm with crossover term[J]. Journal of Computer Applications,2018,38(8):2148-2156,2163.) [9] CHANG Y,YU G. Multi-sub-swarm PSO classifier design and rule extraction[C]//Proceedings of the 1st International Workshop on Cloud Computing and Information Security. Paris:Atlantis Press, 2013:104-107. [10] GHASEMI M,AKBARI E,RAHIMNEJAD A,et al. Phasor particle swarm optimization:a simple and efficient variant of PSO[J]. Soft Computing,2019,23(19):9701-9718. [11] EBTEHAJ I,BONAKDARI H,ES-HAGHI M S. Design of a hybrid ANFIS-PSO model to estimate sediment transport in open channels[J]. Iranian Journal of Science and Technology-Transactions of Civil Engineering,2019,43(4):851-857. [12] 倪庆剑, 张志政, 王蓁蓁, 等. 一种基于可变多簇结构的动态概率粒子群优化算法[J]. 软件学报,2009,20(2):339-349.(NI Q J,ZHANG Z Z,WANG Z Z,et al. Dynamic probabilistic particle swarm optimization based on varying multi-cluster structure[J]. Journal of Software,2009,20(2):339-349.) [13] 李文锋, 梁晓磊, 张煜. 具有异构分簇的粒子群优化算法研究[J]. 电子学报,2012,40(11):2194-2199. (LI W F,LIANG X L,ZHANG Y. Research on PSO with clusters and heterogeneity[J]. Acta Electronica Sinica,2012,40(11):2194-2199.) [14] 贺智明, 李文静. 基于动态全局搜索和柯西变异的花授粉算法[J]. 计算机工程与应用,2019,55(19):74-80,222. (HE Z M,LI W J. Flower pollination algorithm based on dynamic global search and Cauchy mutation[J]. Computer Engineering and Applications,2019,55(19):74-80,222.) [15] 刘生建, 杨艳, 周永权. 一种群体智能算法-狮群算法[J]. 模式识别与人工智能, 2018, 31(5):431-441. (LIU S J,YANG Y, ZHOU Y Q. A swarm intelligence algorithm-lion swarm algorithm[J]. Pattern Recognition and Artificial Intelligence,2018, 31(5):431-441.) |