Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (2): 608-614.DOI: 10.11772/j.issn.1001-9081.2022010100
Special Issue: 多媒体计算与计算机仿真
• Multimedia computing and computer simulation • Previous Articles Next Articles
Wenju LI, Gan ZHANG, Liu CUI(), Wanghui CHU
Received:
2022-01-25
Revised:
2022-04-25
Accepted:
2022-04-26
Online:
2022-05-31
Published:
2023-02-10
Contact:
Liu CUI
About author:
LI Wenju, born in 1964, Ph. D., professor. His research interests include computer vision, pattern recognition, intelligent detection.Supported by:
通讯作者:
崔柳
作者简介:
李文举(1964—),男,辽宁营口人,教授,博士,CCF会员,主要研究方向:计算机视觉、模式识别、智能检测基金资助:
CLC Number:
Wenju LI, Gan ZHANG, Liu CUI, Wanghui CHU. Lightweight traffic sign recognition model based on coordinate attention[J]. Journal of Computer Applications, 2023, 43(2): 608-614.
李文举, 张干, 崔柳, 储王慧. 基于坐标注意力的轻量级交通标志识别模型[J]. 《计算机应用》唯一官方网站, 2023, 43(2): 608-614.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022010100
模型 | 精度 | 召回率 | 帧处理 速率/FPS | 参数量/106 | 模型 大小/MB |
---|---|---|---|---|---|
YOLOv5n | 0.756 4 | 0.776 2 | 333.33 | 1.820 | 3.85 |
YOLOv5s | 0.820 3 | 0.859 0 | 250.00 | 7.140 | 14.00 |
YOLOv5m | 0.825 6 | 0.880 1 | 128.20 | 21.040 | 40.60 |
YOLOv5l | 0.830 0 | 0.890 0 | 75.75 | 46.370 | 80.90 |
YOLOv5x | 0.853 0 | 0.913 0 | 44.64 | 86.510 | 165.00 |
YOLOv5n (1 280×1 280) | 0.868 1 | 0.850 0 | 156.25 | 1.824 | 4.44 |
Tab. 1 Training results comparison of traditional YOLOv5 models
模型 | 精度 | 召回率 | 帧处理 速率/FPS | 参数量/106 | 模型 大小/MB |
---|---|---|---|---|---|
YOLOv5n | 0.756 4 | 0.776 2 | 333.33 | 1.820 | 3.85 |
YOLOv5s | 0.820 3 | 0.859 0 | 250.00 | 7.140 | 14.00 |
YOLOv5m | 0.825 6 | 0.880 1 | 128.20 | 21.040 | 40.60 |
YOLOv5l | 0.830 0 | 0.890 0 | 75.75 | 46.370 | 80.90 |
YOLOv5x | 0.853 0 | 0.913 0 | 44.64 | 86.510 | 165.00 |
YOLOv5n (1 280×1 280) | 0.868 1 | 0.850 0 | 156.25 | 1.824 | 4.44 |
模型 | 精度 | 召回率 | 帧处理 速率/FPS | 参数量/106 | 模型 大小/MB |
---|---|---|---|---|---|
YOLOv5n-P6 | 0.815 7 | 0.820 0 | 263.15 | 3.172 | 6.51 |
YOLOv5s-P6 | 0.840 1 | 0.835 1 | 208.30 | 12.480 | 24.30 |
YOLOv5m-P6 | 0.865 4 | 0.854 9 | 111.11 | 35.530 | 68.30 |
YOLOv5l-P6 | 0.872 3 | 0.871 0 | 68.02 | 76.500 | 146.00 |
YOLOv5x-P6 | 0.8762 | 0.8786 | 40.32 | 140.450 | 268.00 |
YOLOv5n-P6 (1 280×1 280) | 0.875 0 | 0.852 0 | 149.25 | 3.180 | 7.13 |
Tab. 2 Training results comparison of YOLOv5-P6 models with different depths
模型 | 精度 | 召回率 | 帧处理 速率/FPS | 参数量/106 | 模型 大小/MB |
---|---|---|---|---|---|
YOLOv5n-P6 | 0.815 7 | 0.820 0 | 263.15 | 3.172 | 6.51 |
YOLOv5s-P6 | 0.840 1 | 0.835 1 | 208.30 | 12.480 | 24.30 |
YOLOv5m-P6 | 0.865 4 | 0.854 9 | 111.11 | 35.530 | 68.30 |
YOLOv5l-P6 | 0.872 3 | 0.871 0 | 68.02 | 76.500 | 146.00 |
YOLOv5x-P6 | 0.8762 | 0.8786 | 40.32 | 140.450 | 268.00 |
YOLOv5n-P6 (1 280×1 280) | 0.875 0 | 0.852 0 | 149.25 | 3.180 | 7.13 |
模型 | 精度 | 召回率 | 帧处理 速率/FPS | 参数量/106 | 模型 大小/MB |
---|---|---|---|---|---|
YOLOv5n-P6+ 坐标注意力 | 0.847 0 | 0.833 5 | 232.56 | 3.210 | 6.6 |
YOLOv5s-P6+ 坐标注意力 | 0.851 9 | 0.836 3 | 217.39 | 12.620 | 24.5 |
YOLOv5m-P6+ 坐标注意力 | 0.835 2 | 0.815 8 | 107.53 | 35.930 | 69.1 |
YOLOv5l-P6+ 坐标注意力 | 0.826 0 | 0.811 2 | 64.52 | 77.390 | 148.0 |
YOLOv5x-P6+ 坐标注意力 | 0.823 2 | 0.800 3 | 36.63 | 142.140 | 272.0 |
YOLOv5n-P6+ 坐标注意力(1 280×1 280) | 0.8987 | 0.8535 | 144.93 | 3.216 | 7.22 |
Tab. 3 Training results comparison of YOLOv5-P6 models with different depths combined with coordinate attention
模型 | 精度 | 召回率 | 帧处理 速率/FPS | 参数量/106 | 模型 大小/MB |
---|---|---|---|---|---|
YOLOv5n-P6+ 坐标注意力 | 0.847 0 | 0.833 5 | 232.56 | 3.210 | 6.6 |
YOLOv5s-P6+ 坐标注意力 | 0.851 9 | 0.836 3 | 217.39 | 12.620 | 24.5 |
YOLOv5m-P6+ 坐标注意力 | 0.835 2 | 0.815 8 | 107.53 | 35.930 | 69.1 |
YOLOv5l-P6+ 坐标注意力 | 0.826 0 | 0.811 2 | 64.52 | 77.390 | 148.0 |
YOLOv5x-P6+ 坐标注意力 | 0.823 2 | 0.800 3 | 36.63 | 142.140 | 272.0 |
YOLOv5n-P6+ 坐标注意力(1 280×1 280) | 0.8987 | 0.8535 | 144.93 | 3.216 | 7.22 |
模型 | 精度 | 召回率 | 帧处理 速率/FPS | 参数量/106 | 模型 大小/MB |
---|---|---|---|---|---|
YOLOv3 | 0.820 0 | 0.831 4 | 36.76 | 58.74 | 237.00 |
RetinaNet-NeXt | 0.874 5 | 0.790 0 | |||
YOLOv3-A | 0.885 0 | 0.922 0 | 1.25 | ||
YOLOv4 | 0.869 0 | 0.889 0 | 35.84 | 244.00 | |
YOLOX-Nano | 0.613 0 | 349.65 | 2.25 | 17.40 | |
Faster R-CNN | 0.715 0 | 0.765 0 | 11.11 | 159.54 | |
FA-SSD | 0.802 0 | 13.60 | |||
YOLOv5n-P6+ 坐标注意力+ 跨层连接 (1 280×1 280) | 0.910 5 | 0.855 0 | 140.84 | 3.26 | 7.32 |
本文模型 | 0.915 0 | 0.866 4 | 140.84 | 3.26 | 7.32 |
Tab. 4 Comparison of training results between the proposed model and other latest models
模型 | 精度 | 召回率 | 帧处理 速率/FPS | 参数量/106 | 模型 大小/MB |
---|---|---|---|---|---|
YOLOv3 | 0.820 0 | 0.831 4 | 36.76 | 58.74 | 237.00 |
RetinaNet-NeXt | 0.874 5 | 0.790 0 | |||
YOLOv3-A | 0.885 0 | 0.922 0 | 1.25 | ||
YOLOv4 | 0.869 0 | 0.889 0 | 35.84 | 244.00 | |
YOLOX-Nano | 0.613 0 | 349.65 | 2.25 | 17.40 | |
Faster R-CNN | 0.715 0 | 0.765 0 | 11.11 | 159.54 | |
FA-SSD | 0.802 0 | 13.60 | |||
YOLOv5n-P6+ 坐标注意力+ 跨层连接 (1 280×1 280) | 0.910 5 | 0.855 0 | 140.84 | 3.26 | 7.32 |
本文模型 | 0.915 0 | 0.866 4 | 140.84 | 3.26 | 7.32 |
1 | HE S H, CHEN L, ZHANG S Y, et al. Automatic recognition of traffic signs based on visual inspection[J]. IEEE Access, 2021, 9: 43253-43261. 10.1109/access.2021.3059052 |
2 | 于硕. 交通标志识别技术综述[J]. 科技资讯, 2019, 17(6): 15-16. |
YU S. Overview of traffic sign recognition technology[J]. Science and Technology Information, 2019, 17(6): 15-16. | |
3 | FLEYEH H, BISWAS R, DAVAMI E. Traffic sign detection based on AdaBoost color segmentation and SVM classification[C]// Proceedings of the EuroCon 2013. Piscataway: IEEE, 2013: 2005-2010. 10.1109/eurocon.2013.6625255 |
4 | 杜影丽,贾永红,韩静敏. 自然场景车载视频道路交通限速标志的检测与识别方法[J]. 测绘地理信息, 2018, 43(2): 32-34, 37. 10.14188/j.2095-6045.2018018 |
DU Y L, JIA Y H, HAN J M. A detection and recognition method for traffic speed limit signs based on vehicle videos[J]. Journal of Geomatics, 2018, 43(2): 32-34, 37. 10.14188/j.2095-6045.2018018 | |
5 | 陈名松,吴冉冉,张泽功,等. 基于改进CapsNet的交通标志分类模型[J]. 计算机应用研究, 2020, 37(S2):367-368, 371. |
CHEN M S, WU R R, ZHANG Z G, et al. Traffic sign classification model based on improved CapsNet[J]. Application Research of Computers, 2020, 37(S2):367-368, 371. | |
6 | 郭璠,张泳祥,唐琎,等. YOLOv3-A:基于注意力机制的交通标志检测网络[J]. 通信学报, 2021, 42(1):87-99. |
GUO F, ZHANG Y X, TANG J, et al. YOLOv3-A: a traffic sign detection network based on attention mechanism[J]. Journal on Communications, 2021, 42(1):87-99. | |
7 | JIN Y M, FU Y S, WANG W Q, et al. Multi-feature fusion and enhancement single shot detector for traffic sign recognition[J]. IEEE Access, 2020, 8: 38931-38940. 10.1109/access.2020.2975828 |
8 | WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2020: 1571-1580. 10.1109/cvprw50498.2020.00203 |
9 | HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717. 10.1109/cvpr46437.2021.01350 |
10 | TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787. 10.1109/cvpr42600.2020.01079 |
11 | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768. 10.1109/cvpr.2018.00913 |
12 | ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 12993-13000. 10.1609/aaai.v34i07.6999 |
13 | ZHU Z, LIANG D, ZHANG S H, et al. Traffic-sign detection and classification in the wild[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2110-2118. 10.1109/cvpr.2016.232 |
14 | XU K, BA J, KIROS R, et al. Show, attend and tell: neural image caption generation with visual attention[C]// Proceedings of the 32nd International Conference on Machine Learning. New York: JMLR.org, 2015: 2048-2057. 10.1109/cvpr.2015.7298935 |
15 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 10.1109/cvpr.2018.00745 |
16 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. |
17 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. 10.1109/cvpr.2017.106 |
18 | HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. 10.1109/tpami.2015.2389824 |
19 | JIANG B R, LUO R X, MAO J Y, et al. Acquisition of localization confidence for accurate object detection[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11218. Cham: Springer, 2018: 816-832. |
20 | REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 658-666. 10.1109/cvpr.2019.00075 |
21 | 龚祎垄,吴勇,陈铭峥. 针对TT100K交通标志数据集的扩增策略[J]. 福建电脑, 2019, 35(11):70-71. |
GONG Y L, WU Y, CHEN M Z. An enlargement strategy for TT100K traffic sign data set[J]. Journal of Fujian Computer, 2019, 35(11):70-71. | |
22 | 张干,李文举,张耀星. 基于改进的YOLOv5算法的交通标志识别[C]// 21全国仿真技术学术会议论文集. 北京: 计算机仿真杂志社, 2021:182-185, 249. 10.1109/iccnea50255.2020.00021 |
ZHANG G, LI W J, ZHANG Y X. Traffic sign recognition based on improved YOLOv5 algorithm[C]// Proceedings of the 2021 China Simulation Technology Conference. Beijing: Periodical Office of Computer Simulation, 2021:182-185, 249. 10.1109/iccnea50255.2020.00021 |
[1] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[2] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[3] | Kaili DENG, Weibo WEI, Zhenkuan PAN. Industrial defect detection method with improved masked autoencoder [J]. Journal of Computer Applications, 2024, 44(8): 2595-2603. |
[4] | Ruihua LIU, Zihe HAO, Yangyang ZOU. Gait recognition algorithm based on multi-layer refined feature fusion [J]. Journal of Computer Applications, 2024, 44(7): 2250-2257. |
[5] | Zhe KONG, Han LI, Shaowei GAN, Mingru KONG, Bingtao HE, Ziyu GUO, Ducheng JIN, Zhaowen QIU. Structure segmentation model for 3D kidney images based on asymmetric multi-decoder and attention module [J]. Journal of Computer Applications, 2024, 44(7): 2216-2224. |
[6] | Xiaohui CHENG, Yuntian HUANG, Ruifang ZHANG. Lightweight infrared road scene detection model based on multiscale and weighted coordinate attention [J]. Journal of Computer Applications, 2024, 44(6): 1927-1934. |
[7] | Yue LIU, Fang LIU, Aoyun WU, Qiuyue CHAI, Tianxiao WANG. 3D object detection network based on self-attention mechanism and graph convolution [J]. Journal of Computer Applications, 2024, 44(6): 1972-1977. |
[8] | Mengyuan HUANG, Kan CHANG, Mingyang LING, Xinjie WEI, Tuanfa QIN. Progressive enhancement algorithm for low-light images based on layer guidance [J]. Journal of Computer Applications, 2024, 44(6): 1911-1919. |
[9] | Guijin HAN, Xinyuan ZHANG, Wentao ZHANG, Ya HUANG. Self-supervised image registration algorithm based on multi-feature fusion [J]. Journal of Computer Applications, 2024, 44(5): 1597-1604. |
[10] | Xin LI, Qiao MENG, Junyi HUANGFU, Lingchen MENG. YOLOv5 multi-attribute classification based on separable label collaborative learning [J]. Journal of Computer Applications, 2024, 44(5): 1619-1628. |
[11] | Hongtian LI, Xinhao SHI, Weiguo PAN, Cheng XU, Bingxin XU, Jiazheng YUAN. Few-shot object detection via fusing multi-scale and attention mechanism [J]. Journal of Computer Applications, 2024, 44(5): 1437-1444. |
[12] | Wei LI, Ling CHEN, Xiuyuan XU, Min ZHU, Jixiang GUO, Kai ZHOU, Hao NIU, Yuchen ZHANG, Shanye YI, Yi ZHANG, Fengming LUO. Interstitial lung disease segmentation algorithm based on multi-task learning [J]. Journal of Computer Applications, 2024, 44(4): 1285-1293. |
[13] | Tianhua CHEN, Jiaxuan ZHU, Jie YIN. Bird recognition algorithm based on attention mechanism [J]. Journal of Computer Applications, 2024, 44(4): 1114-1120. |
[14] | Zongze JIA, Pengfei GAO, Yinglong MA, Xiaofeng LIU, Haixin XIA. Multi-feature fusion attention-based hierarchical classification method for dialogue act [J]. Journal of Computer Applications, 2024, 44(3): 715-721. |
[15] | Zhanjun JIANG, Baijing WU, Long MA, Jing LIAN. Faster-RCNN water-floating garbage recognition based on multi-scale feature and polarized self-attention [J]. Journal of Computer Applications, 2024, 44(3): 938-944. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||