| 1 | AKHTAR M S, CHAUHAN D S, GHOSAL D, et al. Multi-task learning for multi-modal emotion recognition and sentiment analysis[C]// Proceedings of the 2019 Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: ACL, 2019: 370-379.  10.18653/v1/n19-1034 | 
																													
																							| 2 | KUMAR A, EKBAL A, KAWAHR D, et al. Emotion helps sentiment: a multi-task model for sentiment and emotion recognition [C]// Proceedings of the 2019 International Joint Conference on Neural Networks. Piscataway: IEEE, 2019: 1-8.  10.1109/ijcnn.2019.8852352 | 
																													
																							| 3 | LIU Y H, OTT M, GOYAL N, et al. RoBERTa: A robustly optimized bert pretraining approach [EB/OL] (2019-07-26) [2021-01-05]. . | 
																													
																							| 4 | LI Y R, SU H, SHEN X Y, et al. DailyDialog: a manually labelled multi-turn dialogue dataset [C]// Proceedings of the 8th International Joint Conference on Natural Language Processing. [S.l.]: Asian Federation of Natural Language Processing, 2017: 986-995. | 
																													
																							| 5 | HERZIG J, FEIGENBLAT G, SHMUELI-SCHEUER M, et al. Classifying emotions in customer support dialogues in social media[C]//Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue. Stroudsburg, PA: ACL, 2016: 64-73.  10.18653/v1/w16-3609 | 
																													
																							| 6 | KIM Y. Convolutional neural networks for sentence classification [C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2014: 1746-1751.  10.3115/v1/d14-1181 | 
																													
																							| 7 | 郝志峰,黄浩,蔡瑞初,等.基于多特征融合与双向RNN的细粒度意见分析[J].计算机工程,2018,44(7):199-204,211. | 
																													
																							|  | HAO Z F, HUANG H, CAI R C, et al. Fine-grained opinion analysis based on multi-feature fusion and bidirectional RNN[J]. Computer Engineering, 2018, 44(7): 199-204, 211. | 
																													
																							| 8 | HAZARIKA D, PORIA S, ZADEH A, et al. Conversational memory network for emotion recognition in dyadic dialogue videos[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Stroudsburg, PA: ACL, 2018: 2122-2132.  10.18653/v1/n18-1193 | 
																													
																							| 9 | HAZARIKA D, PORIA S, MIHALCEA R, et al. ICON: interactive conversational memory network for multimodal emotion detection [C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2018: 2594-2604.  10.18653/v1/d18-1280 | 
																													
																							| 10 | MAJUMDER N, PORIA S, HAZARIKA D, et al. DialogueRNN: an attentive RNN for emotion detection in conversations [C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019, 33: 6818-6825.  10.1609/aaai.v33i01.33016818 | 
																													
																							| 11 | SHEN W Z, CHEN J Q, QUAN X J, et al. DialogXL: all-in-one XLNet for multi-party conversation emotion recognition [C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021, 35(15): 13789-13797.  10.1609/aaai.v35i15.17625 | 
																													
																							| 12 | ZHONG P X, WANG D, MIAO C. Knowledge-enriched transformer for emotion detection in textual conversations[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, PA: ACL, 2019: 165-176.  10.18653/v1/d19-1016 | 
																													
																							| 13 | BHAT V, YADAV A, YADAV S, et al. AdCOFE: Advanced contextual feature extraction in conversations for emotion classification[J]. PeerJ Computer Science, 2021, 7: No.786.  10.7717/peerj-cs.786 | 
																													
																							| 14 | GHOSAL D, MAJUMDER N, PORIA S, et al. DialogueGCN: a graph convolutional neural network for emotion recognition in conversation[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing. Stroudsburg, PA: ACL, 2019: 154-164.  10.18653/v1/d19-1015 | 
																													
																							| 15 | ISHIWATARI T, YASUDA Y, MIYAZAKI T, et al. Relation-aware graph attention networks with relational position encodings for emotion recognition in conversations[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2020: 7360-7370.  10.18653/v1/2020.emnlp-main.597 | 
																													
																							| 16 | 彭韬,杨亮,桑钟屹,等.基于异构二部图的对话情感分析[J].中文信息学报,2021,35(11):135-142.  10.3969/j.issn.1003-0077.2021.11.014 | 
																													
																							|  | PENG T, YANG L, SANG Z Y, et al. Conversation sentiment analysis based on heterogeneous bipartite graphs[J]. Journal of Chinese Information Processing, 2021,35(11):135-142.  10.3969/j.issn.1003-0077.2021.11.014 | 
																													
																							| 17 | SHEN W Z, WU S Y, YANG Y Y, et al. Directed acyclic graph network for conversational emotion recognition [C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg, PA: ACL, 2020: 1551-1560.  10.18653/v1/2021.acl-long.123 | 
																													
																							| 18 | QIN L B, CHE W X, LI Y M, et al. DCR-Net: a deep co-interactive relation network for joint dialog act recognition and sentiment classification [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 8665-8672.  10.1609/aaai.v34i05.6391 |