Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (3): 700-705.DOI: 10.11772/j.issn.1001-9081.2022020216
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Lubao LI1,2(), Tian CHEN1,2, Fuji REN3, Beibei LUO1,2
Received:
2022-02-28
Revised:
2022-04-28
Accepted:
2022-04-29
Online:
2022-08-16
Published:
2023-03-10
Contact:
Lubao LI
About author:
CHEN Tian, born in 1974, Ph. D., associate professor. Her research interests include affective computing, artificial intelligence.Supported by:
通讯作者:
李路宝
作者简介:
李路宝(1992—),男,安徽芜湖人,硕士研究生,CCF会员,主要研究方向:情感计算、人工智能基金资助:
CLC Number:
Lubao LI, Tian CHEN, Fuji REN, Beibei LUO. Bimodal emotion recognition method based on graph neural network and attention[J]. Journal of Computer Applications, 2023, 43(3): 700-705.
李路宝, 陈田, 任福继, 罗蓓蓓. 基于图神经网络和注意力的双模态情感识别方法[J]. 《计算机应用》唯一官方网站, 2023, 43(3): 700-705.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022020216
维度 | EGG | ECG | 本文方法 |
---|---|---|---|
valence | 89.45 | 76.65 | 91.82 |
arousal | 87.89 | 70.65 | 88.24 |
Tab. 1 Comparison of accuracy of different models
维度 | EGG | ECG | 本文方法 |
---|---|---|---|
valence | 89.45 | 76.65 | 91.82 |
arousal | 87.89 | 70.65 | 88.24 |
数据集 | 方法 | 准确率 | 标准差 |
---|---|---|---|
SEED | DGCNN | 90.04 | 8.49 |
DBN | 86.08 | 8.34 | |
本文方法 | 93.73 | 5.63 | |
SEED-IV | DGCNN | 69.88 | 16.29 |
DBN | 69.08 | 16.16 | |
本文方法 | 83.59 | 12.43 |
Tab. 2 Average accuracy and standard deviation of classification on different datasets
数据集 | 方法 | 准确率 | 标准差 |
---|---|---|---|
SEED | DGCNN | 90.04 | 8.49 |
DBN | 86.08 | 8.34 | |
本文方法 | 93.73 | 5.63 | |
SEED-IV | DGCNN | 69.88 | 16.29 |
DBN | 69.08 | 16.16 | |
本文方法 | 83.59 | 12.43 |
维度 | Bi-LSTM | 基于注意力的Bi-LSTM |
---|---|---|
valence | 76.65 | 73.14 |
arousal | 70.15 | 69.03 |
Tab. 3 Comparison of accuracy in ablation experiment
维度 | Bi-LSTM | 基于注意力的Bi-LSTM |
---|---|---|
valence | 76.65 | 73.14 |
arousal | 70.15 | 69.03 |
维度 | 文献[ | 文献[ 方法 | 文献[ 方法 | 文献[ 方法 | 本文方法 |
---|---|---|---|---|---|
valence | 79.06 | 80.46 | 82.78 | 85.38 | 91.82 |
arousal | 77.19 | 76.56 | 75.11 | 77.52 | 88.24 |
Tab. 4 Comparison of accuracy of different multimodal methods
维度 | 文献[ | 文献[ 方法 | 文献[ 方法 | 文献[ 方法 | 本文方法 |
---|---|---|---|---|---|
valence | 79.06 | 80.46 | 82.78 | 85.38 | 91.82 |
arousal | 77.19 | 76.56 | 75.11 | 77.52 | 88.24 |
1 | AL-KAYSI A M, AL-ANI A, LOO C K, et al. Predicting tDCS treatment outcomes of patients with major depressive disorder using automated EEG classification[J]. Journal of Affective Disorders, 2017, 208: 597-603. 10.1016/j.jad.2016.10.021 |
2 | BOCHAROV A V, KNYAZEV G G, SAVOSTYANOV A N. Depression and implicit emotion processing: an EEG study[J]. Neurophysiologie Clinique/Clinical Neurophysiology, 2017, 47(3): 225-230. 10.1016/j.neucli.2017.01.009 |
3 | SOLEYMANI M, PANTIC M, PUN T. Multimodal emotion recognition in response to videos[J]. IEEE Transactions on Affective Computing, 2012, 3(2): 211-223. 10.1109/t-affc.2011.37 |
4 | ZHENG W L, DONG B N, LU B L. Multimodal emotion recognition using EEG and eye tracking data[C]// Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2014: 5040-5043. 10.1109/embc.2014.6944757 |
5 | KOELSTRA S, MUHL C, SOLEYMANI M, et al. DEAP: a database for emotion analysis; using physiological signals[J]. IEEE Transactions on Affective Computing, 2012, 3(1): 18-31. 10.1109/t-affc.2011.15 |
6 | KOBER H, FELDMAN BARRETT L, JOSEPH J, et al. Functional grouping and cortical-subcortical interactions in emotion: a meta-analysis of neuroimaging studies[J]. NeuroImage, 2008, 42(2): 998-1031. 10.1016/j.neuroimage.2008.03.059 |
7 | KIM M J, LOUCKS R A, PALMER A L, et al. The structural and functional connectivity of the amygdala: from normal emotion to pathological anxiety[J]. Behavioural Brain Research, 2011, 223(2): 403-410. 10.1016/j.bbr.2011.04.025 |
8 | KRAGEL P A, LaBAR K S. Decoding the nature of emotion in the brain[J]. Trends in Cognitive Sciences, 2016, 20(6): 444-455. 10.1016/j.tics.2016.03.011 |
9 | PEREIRA E T, GOMES H M, VELOSO L R, et al. Empirical evidence relating EEG signal duration to emotion classification performance[J]. IEEE Transactions on Affective Computing, 2021, 12(1): 154-164. 10.1109/taffc.2018.2854168 |
10 | KRISNANDHIKA B, FAQIH A, PUMAMASARI P D, et al. Emotion recognition system based on EEG signals using relative wavelet energy features and a modified radial basis function neural networks[C]// Proceedings of the 2017 International Conference on Consumer Electronics and Devices. Piscataway: IEEE, 2017: 50-54. 10.1109/icced.2017.8019990 |
11 | CHEN T, JU S H, REN F J, et al. EEG emotion recognition model based on the LIBSVM classifier[J]. Measurement, 2020, 164: No.108047. 10.1016/j.measurement.2020.108047 |
12 | SONG T F, ZHENG W M, SONG P, et al. EEG emotion recognition using dynamical graph convolutional neural networks[J]. IEEE Transactions on Affective Computing, 2020, 11(3): 532-541. 10.1109/taffc.2018.2817622 |
13 | ZHONG P X, WANG D, MIAO C Y. EEG-based emotion recognition using regularized graph neural networks[J]. IEEE Transactions on Affective Computing, 2022, 13(3): 1290-1301. 10.1109/taffc.2020.2994159 |
14 | KATSIGIANNIS S, RAMZAN N. DREAMER: a database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices[J]. IEEE Journal of Biomedical and Health Informatics, 2018, 22(1): 98-107. 10.1109/JBHI.2017.2688239 |
15 | ZHENG W L, ZHU J Y, PENG Y, et al. EEG-based emotion classification using deep belief networks[C]// Proceedings of the 2014 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2014: 1-6. 10.1109/icme.2014.6890166 |
16 | SANEI S, CHAMBERS J A. EEG Signal Processing[M]. Chichester: John Wiley & Sons, 2007: 17. 10.1002/9780470511923 |
17 | SALVADOR R, SUCKLING J, COLEMAN M R, et al. Neurophysiological architecture of functional magnetic resonance images of human brain[J]. Cerebral Cortex, 2005, 15(9): 1332-1342. 10.1093/cercor/bhi016 |
18 | DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2016: 3844-3852. |
19 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22) [2022-01-23].. 10.48550/arXiv.1609.02907 |
20 | LIANG X L, XU J. Biased ReLU neural networks[J]. Neurocomputing, 2021, 423: 71-79. 10.1016/j.neucom.2020.09.050 |
21 | PAN J P, TOMPKINS W J. A real-time QRS detection algorithm[J]. IEEE Transactions on Biomedical Engineering, 1985, BME-32(3): 230-236. 10.1109/tbme.1985.325532 |
22 | ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short papers). Stroudsburg, PA: ACL, 2016: 207-212. 10.18653/v1/p16-2034 |
23 | WARRINER A B, KUPERMAN V, BRYSBAERT M. Norms of valence, arousal, and dominance for 13,915 English lemmas[J]. Behavior Research Methods, 2013, 45(4): 1191-1207. 10.3758/s13428-012-0314-x |
24 | ZHENG W L, LU B L. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks[J]. IEEE Transactions on Autonomous Mental Development, 2015, 7(3): 162-175. 10.1109/tamd.2015.2431497 |
25 | ZHENG W L, LIU W, LU Y F, et al. EmotionMeter: a multimodal framework for recognizing human emotions[J]. IEEE Transactions on Cybernetics, 2019, 49(3): 1110-1122. 10.1109/tcyb.2018.2797176 |
26 | XIE Q, LIU Z T, DING X W. Electroencephalogram emotion recognition based on a stacking classification model[C]// Proceedings of the 37th International Conference on Chinese Control. Piscataway: IEEE, 2018: 5544-5548. 10.23919/chicc.2018.8483496 |
27 | KWON Y H, SHIN S B, KIM S D. Electroencephalography based fusion Two-Dimensional (2D)-Convolution Neural Networks (CNN) model for emotion recognition system[J]. Sensors, 2018, 18(5): No.1383. 10.3390/s18051383 |
28 | HSU Y L, WANG J S, CHIANG W C, et al. Automatic ECG-based emotion recognition in music listening[J]. IEEE Transactions on Affective Computing, 2020, 11(1): 85-99. 10.1109/taffc.2017.2781732 |
29 | CHEN T, YIN H F, YUAN X H, et al. Emotion recognition based on fusion of long short-term memory networks and SVMs[J]. Digital Signal Processing, 2021, 117: No.103153. 10.1016/j.dsp.2021.103153 |
[1] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. |
[2] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[3] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[4] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[5] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[6] | Hang YANG, Wanggen LI, Gensheng ZHANG, Zhige WANG, Xin KAI. Multi-layer information interactive fusion algorithm based on graph neural network for session-based recommendation [J]. Journal of Computer Applications, 2024, 44(9): 2719-2725. |
[7] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[8] | Liehong REN, Lyuwen HUANG, Xu TIAN, Fei DUAN. Multivariate long-term series forecasting method with DFT-based frequency-sensitive dual-branch Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2739-2746. |
[9] | Yeheng LI, Guangsheng LUO, Qianmin SU. Logo detection algorithm based on improved YOLOv5 [J]. Journal of Computer Applications, 2024, 44(8): 2580-2587. |
[10] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[11] | Yuqing WANG, Guangli ZHU, Wenjie DUAN, Shuyu LI, Ruotong ZHOU. Sentiment classification model of psychological counseling text based on attention over attention mechanism [J]. Journal of Computer Applications, 2024, 44(8): 2393-2399. |
[12] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[13] | Tong CHEN, Fengyu YANG, Yu XIONG, Hong YAN, Fuxing QIU. Construction method of voiceprint library based on multi-scale frequency-channel attention fusion [J]. Journal of Computer Applications, 2024, 44(8): 2407-2413. |
[14] | Caiqin WANG, Yuhao ZHOU, Shunxiang ZHANG, Yanhui WANG, Xiaolong WANG. Aspect-opinion pair extraction of new energy vehicle complaint text based on context enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2430-2436. |
[15] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||