Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (10): 3283-3291.DOI: 10.11772/j.issn.1001-9081.2022010002
• Frontier and comprehensive applications • Previous Articles Next Articles
Haiwen XU1, Jiacai SHI2, Teng WANG2
Received:2022-01-06
															
							
																	Revised:2022-04-25
															
							
																	Accepted:2022-04-27
															
							
							
																	Online:2022-10-14
															
							
																	Published:2022-10-10
															
							
						Contact:
								Haiwen XU   
													About author:XU Haiwen, born in 1978, Ph. D. , professor. His research interests include optimization theory and algorithms, transportation planning and management.Supported by:徐海文1, 史家财2, 汪腾2
通讯作者:
					徐海文
							作者简介:第一联系人:徐海文(1978—),男,山东菏泽人,教授,博士,主要研究方向:优化理论与算法、交通运输规划与管理; xuhaiwen_dream@163.com基金资助:CLC Number:
Haiwen XU, Jiacai SHI, Teng WANG. Departure flight delay prediction model based on deep fully connected neural network[J]. Journal of Computer Applications, 2022, 42(10): 3283-3291.
徐海文, 史家财, 汪腾. 基于深度全连接神经网络的离港航班延误预测模型[J]. 《计算机应用》唯一官方网站, 2022, 42(10): 3283-3291.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022010002
| 研究对象 | 数据集 | 样本数比例/% | 
|---|---|---|
| 离港航班相关数据470 403条 | 训练集 | 60 | 
| 验证集 | 20 | |
| 测试集 | 20 | 
Tab. 1 Experimental data information of Chengdu Shuangliu Airport departure flights
| 研究对象 | 数据集 | 样本数比例/% | 
|---|---|---|
| 离港航班相关数据470 403条 | 训练集 | 60 | 
| 验证集 | 20 | |
| 测试集 | 20 | 
| 数据集合A | 数据项 | 维度 | |||
|---|---|---|---|---|---|
| A1 | 有 | 有 | 无 | 无 | 470 403×32 | 
| A2 | 有 | 有 | 有 | 无 | 470 403×36 | 
| A3 | 有 | 有 | 有 | 有 | 470 403×37 | 
Tab. 2 Datasets after merging data items
| 数据集合A | 数据项 | 维度 | |||
|---|---|---|---|---|---|
| A1 | 有 | 有 | 无 | 无 | 470 403×32 | 
| A2 | 有 | 有 | 有 | 无 | 470 403×36 | 
| A3 | 有 | 有 | 有 | 有 | 470 403×37 | 
| 激活函数 | 损失值 | 精确度 | 
|---|---|---|
| tanh | 0.218 6 | 0.830 0 | 
| ReLU | 0.278 4 | 0.817 4 | 
| ELU | 0.216 2 | 0.830 2 | 
Tab. 3 Experimental prediction results of different activation parameters
| 激活函数 | 损失值 | 精确度 | 
|---|---|---|
| tanh | 0.218 6 | 0.830 0 | 
| ReLU | 0.278 4 | 0.817 4 | 
| ELU | 0.216 2 | 0.830 2 | 
| 激活函数 | 输入数据 | 损失值 | 精确度 | 
|---|---|---|---|
| tanh | A1 | 0.218 6 | 0.830 0 | 
| A2 | 0.219 2 | 0.829 7 | |
| A3 | 0.182 7 | 0.858 8 | |
| ELU | A1 | 0.216 2 | 0.830 2 | 
| A2 | 0.218 2 | 0.830 1 | |
| A3 | 0.184 3 | 0.861 3 | 
Tab. 4 Experimental prediction results of different input data
| 激活函数 | 输入数据 | 损失值 | 精确度 | 
|---|---|---|---|
| tanh | A1 | 0.218 6 | 0.830 0 | 
| A2 | 0.219 2 | 0.829 7 | |
| A3 | 0.182 7 | 0.858 8 | |
| ELU | A1 | 0.216 2 | 0.830 2 | 
| A2 | 0.218 2 | 0.830 1 | |
| A3 | 0.184 3 | 0.861 3 | 
| TH/min | 损失值 | 精确度 | 
|---|---|---|
| 15 | 0.184 3 | 0.861 3 | 
| 30 | 0.183 5 | 0.861 8 | 
| 60 | 0.181 6 | 0.862 1 | 
Tab. 5 Experimental prediction results of different thresholds
| TH/min | 损失值 | 精确度 | 
|---|---|---|
| 15 | 0.184 3 | 0.861 3 | 
| 30 | 0.183 5 | 0.861 8 | 
| 60 | 0.181 6 | 0.862 1 | 
| 隐含层层数 | 损失值 | 精确度 | 
|---|---|---|
| 5 | 0.181 6 | 0.862 1 | 
| 10 | 0.187 8 | 0.858 5 | 
| 15 | 0.188 3 | 0.858 3 | 
Tab. 6 Experimental prediction results of DFCNN with different hidden layers
| 隐含层层数 | 损失值 | 精确度 | 
|---|---|---|
| 5 | 0.181 6 | 0.862 1 | 
| 10 | 0.187 8 | 0.858 5 | 
| 15 | 0.188 3 | 0.858 3 | 
| 隐含层层数 | Dropout层参数p | 损失值 | 精确度 | 
|---|---|---|---|
| 5 | 0.3 | 0.109 3 | 0.923 9 | 
| 0.5 | 0.181 6 | 0.862 1 | |
| 0.7 | 0.213 5 | 0.847 9 | |
| 10 | 0.3 | 0.114 8 | 0.919 4 | 
| 0.5 | 0.187 8 | 0.858 5 | |
| 0.7 | 0.226 2 | 0.843 6 | |
| 15 | 0.3 | 0.121 2 | 0.914 1 | 
| 0.5 | 0.188 3 | 0.858 3 | |
| 0.7 | 0.224 8 | 0.842 1 | 
Tab. 7 Experimental prediction results of different Dropout parameters under different layers
| 隐含层层数 | Dropout层参数p | 损失值 | 精确度 | 
|---|---|---|---|
| 5 | 0.3 | 0.109 3 | 0.923 9 | 
| 0.5 | 0.181 6 | 0.862 1 | |
| 0.7 | 0.213 5 | 0.847 9 | |
| 10 | 0.3 | 0.114 8 | 0.919 4 | 
| 0.5 | 0.187 8 | 0.858 5 | |
| 0.7 | 0.226 2 | 0.843 6 | |
| 15 | 0.3 | 0.121 2 | 0.914 1 | 
| 0.5 | 0.188 3 | 0.858 3 | |
| 0.7 | 0.224 8 | 0.842 1 | 
| 模型 | 输入数据集 | |
|---|---|---|
| C4.5决策树 | 航班数据(国内) | 82.00 | 
| 贝叶斯网络 | 航班数据(国内) | 88.00 | 
| 随机森林 | 航班数据、气象数据(国内) | 60.00 | 
| RNN | 航班数据、气象数据(国外) | 87.42 | 
| 5LSTM | 航班数据、气象数据(国外) | 88.63 | 
| 5ANN | 航班数据、气象数据(国外) | 88.64 | 
| 改进5层DFCNN | A3(国内) | 92.39 | 
Tab. 8 Comparison of prediction accuracy of different flight delay prediction models
| 模型 | 输入数据集 | |
|---|---|---|
| C4.5决策树 | 航班数据(国内) | 82.00 | 
| 贝叶斯网络 | 航班数据(国内) | 88.00 | 
| 随机森林 | 航班数据、气象数据(国内) | 60.00 | 
| RNN | 航班数据、气象数据(国外) | 87.42 | 
| 5LSTM | 航班数据、气象数据(国外) | 88.63 | 
| 5ANN | 航班数据、气象数据(国外) | 88.64 | 
| 改进5层DFCNN | A3(国内) | 92.39 | 
| 1 | 朱江,黄建伟,亓洋洋,等. 基于超越对数成本函数的航空公司延误成本测算[J]. 物流科技, 2020, 43(12):35-38, 45. 10.3969/j.issn.1002-3100.2020.12.010 | 
| ZHU J, HUANG J W, QI Y Y, et al. Airline delay cost estimation based on Trans-log cost function[J]. Logistics Sci-Tech, 2020, 43(12): 35-38, 45. 10.3969/j.issn.1002-3100.2020.12.010 | |
| 2 | Federal Aviation Administration. Cost of delay estimates 2019[EB/OL]. (2020-07-08) [2021-12-25].. 10.2172/1768316 | 
| 3 | 朱志国,周雨禾. 航班延误突发性群体事件疏导:基于改进的情绪感染模型[J]. 系统工程, 2018, 36(5):79-84. | 
| ZHU Z G, ZHOU Y H. Evacuation of unexpected mass incidents caused by flight delays: based on an improved emotional contagion model[J]. Systems Engineering, 2018, 36(5): 79-84. | |
| 4 | 谌婧娇. 基于Spark的决策树算法对航班延误预测研究[J]. 电脑知识与技术, 2021, 17(4):217-219. | 
| CHEN J J. Prediction of flight delay based on decision tree algorithm of spark[J]. Computer Knowledge and Technology, 2021, 17(4): 217-219. | |
| 5 | 高旗,初建宇,李印凤. 基于PSO-BP神经网络的终端区拥堵等级预测模型[J]. 航空计算技术, 2019, 49(6):57-61. 10.3969/j.issn.1671-654X.2019.06.013 | 
| GAO Q, CHU J Y, LI Y F. Prediction model of congestion level in terminal area based on PSO-BP neural network[J]. Aeronautical Computing Technique, 2019, 49(6): 57-61. 10.3969/j.issn.1671-654X.2019.06.013 | |
| 6 | 唐红,王栋,宋博,等. 基于非线性赋权XGBoost算法的航班延误分类预测[J]. 系统仿真学报, 2021, 33(9):2261-2269. 10.16182/j.issn1004731x.joss.20-0372 | 
| TANG H, WANG D, SONG B, et al. Classification of flight delay based on nonlinear weighted XGBoost[J]. Journal of System Simulation, 2021, 33(9): 2261-2269. 10.16182/j.issn1004731x.joss.20-0372 | |
| 7 | 宋捷,杨磊,胡明华,等. 基于深度学习的航班起降延误预测方法[J]. 航空计算技术, 2020, 50(3):30-34. 10.3969/j.issn.1671-654X.2020.03.007 | 
| SONG J, YANG L, HU M H, et al. Departure and landing delay prediction based on deep learning technique[J]. Aeronautical Computing Technique, 2020, 50(3): 30-34. 10.3969/j.issn.1671-654X.2020.03.007 | |
| 8 | CHOI S, KIM Y J, BRICENO S, et al. Prediction of weather-induced airline delays based on machine learning algorithms[C]// Proceedings of the IEEE/AIAA 35th Digital Avionics Systems Conference. Piscataway: IEEE, 2016: 1-6. 10.1109/dasc.2016.7777956 | 
| 9 | 李晓霞,吴薇薇,韩东,等. 基于聚类与贝叶斯网络的航班离港延误预测模型[J]. 哈尔滨商业大学学报(自然科学版), 2020, 36(1):110-113, 120. | 
| LI X X, WU W W, HAN D, et al. Flight departure delay prediction model based on clustering and Bayesian network[J]. Journal of Harbin University of Commerce (Natural Sciences Edition), 2020, 36(1): 110-113, 120. | |
| 10 | 王春政,胡明华,杨磊,等. 基于Agent模型的机场网络延误预测[J]. 航空学报, 2021, 42(7):452-465. 10.7527/S1000-6893.2020.24604 | 
| WANG C Z, HU M H, YANG L, et al. Airport network delay prediction based on Agent model[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 452-465. 10.7527/S1000-6893.2020.24604 | |
| 11 | KHANMOHAMMADI S, TUTUN S, KUCUK Y. A new multilevel input layer artificial neural network for predicting flight delays at JFK airport[J]. Procedia Computer Science, 2016, 95: 237-244. 10.1016/j.procs.2016.09.321 | 
| 12 | 吴仁彪,李佳怡,屈景怡. 基于双通道卷积神经网络的航班延误预测模型[J]. 计算机应用, 2018, 38(7):2100-2106, 2112. 10.11772/j.issn.1001-9081.2018010037 | 
| WU R B, LI J Y, QU J Y. Flight delay prediction model based on dual-channel convolutional neural network[J]. Journal of Computer Applications, 2018, 38(7): 2100-2106, 2112. 10.11772/j.issn.1001-9081.2018010037 | |
| 13 | 张舜尧,戴福青. 基于航空公司的航班计划优化与延误预测[J]. 科学技术与工程, 2021, 21(9):3855-3860. 10.3969/j.issn.1671-1815.2021.09.060 | 
| ZHANG S Y, DAI F Q. Flight plan optimization and delay prediction based on airlines[J]. Science Technology and Engineering, 2021, 21(9): 3855-3860. 10.3969/j.issn.1671-1815.2021.09.060 | |
| 14 | 谢华,李雨吟,胡明华,等. 基于BP神经网络的机场离港延误等级预测[J]. 航空计算技术, 2019, 49(3):71-74. 10.3969/j.issn.1671-654X.2019.03.017 | 
| XIE H, LI Y Y, HU M H, et al. Prediction of airport departure delay level based on BP neural network[J]. Aeronautical Computing Technique, 2019, 49(3): 71-74. 10.3969/j.issn.1671-654X.2019.03.017 | |
| 15 | 胡越,罗东阳,花奎,等. 关于深度学习的综述与讨论[J]. 智能系统学报, 2019, 14(1):1-19. 10.11992/tis.201808019 | 
| HU Y, LUO D Y, HUA K, et al. Overview on deep learning[J]. CAAI Transactions on Intelligent Systems, 2019, 14(1): 1-19. 10.11992/tis.201808019 | |
| 16 | SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15: 1929-1958. | 
| 17 | 罗雄,邵荃,张海蛟,等. 航班延误引发的旅客群体性事件仿真研究[J]. 航空计算技术, 2014, 44(6):25-29, 34. 10.3969/j.issn.1671-654X.2014.06.007 | 
| LUO X, SHAO Q, ZHANG H J, et al. Research on simulation of passenger mass event derived from flight delay[J]. Aeronautical Computing Technique, 2014, 44(6): 25-29, 34. 10.3969/j.issn.1671-654X.2014.06.007 | |
| 18 | 尹晓丽. 大型机场航站楼旅客拥挤感知及控制策略研究[D]. 天津:中国民航大学, 2019:40-43. | 
| YIN X L. Research on passenger crowding perception and control strategy in large airport terminals[D]. Tianjin: Civil Aviation University of China, 2019: 40-43. | |
| 19 | KIM J B. Introduction to the Montreal Convention 1999[J]. The Korean Journal of Air & Space Law and Policy, 2003, 17: 9-28. | 
| 20 | CHENG B. A new era in the law of international carriage by air: from Warsaw (1929) to Montreal (1999)[J]. International and Comparative Law Quarterly, 2004, 53(4): 833-859. 10.1093/iclq/53.4.833 | 
| 21 | 付振宇,徐海文,傅强. 航班延误预测研究概述[J]. 科技与创新, 2020(3):1-4. | 
| FU Z Y, XU H W, FU Q. Overview of flight delay prediction[J]. Science and Technology & Innovation, 2020(3): 1-4. | |
| 22 | 吴仁彪,李佳怡,屈景怡. 融合气象数据的并行化航班延误预测模型[J]. 信号处理, 2018, 34(5):505-512. | 
| WU R B, LI J Y, QU J Y. Parallel flight delay prediction model based on fusion of meteorological data[J]. Journal of Signal Processing, 2018, 34(5): 505-512. | |
| 23 | DOZAT T. Incorporating Nesterov momentum into Adam[EB/OL] (2016-02-19) [2021-12-25].. | 
| 24 | 周鑫. 全连接神经网络在FPGA上的实现与优化[D]. 合肥:中国科学技术大学, 2018:28-30. | 
| ZHOU X. Implementation and optimization of fully connected neural network on FPGA[D]. Hefei: University of Science and Technology of China, 2018: 28-30. | |
| 25 | LI Y, FAN C X, LI Y, et al. Improving deep neural network with multiple parametric exponential linear units[J]. Neurocomputing, 2018, 301: 11-24. 10.1016/j.neucom.2018.01.084 | 
| 26 | GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]// Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2010: 249-256. | 
| 27 | 徐海文,付振宇,傅强. 基于时效信息和深度学习的离港航班延误预测[J]. 科学技术与工程, 2020, 20(34):14126-14132. 10.3969/j.issn.1671-1815.2020.34.026 | 
| XU H W, FU Z Y, FU Q. The departure light delay prediction based on timely information and deep learning[J]. Science Technology and Engineering, 2020, 20(34): 14126-14132. 10.3969/j.issn.1671-1815.2020.34.026 | |
| 28 | 程俊华,曾国辉,鲁敦科,等. 基于Dropout的改进卷积神经网络模型平均方法[J]. 计算机应用, 2019, 39(6):1601-1606. 10.11772/j.issn.1001-9081.2018122501 | 
| CHENG J H, ZENG G H, LU D K, et al. Improved convolution neural network model averaging method based on Dropout[J]. Journal of Computer Applications, 2019, 39(6): 1601-1606. 10.11772/j.issn.1001-9081.2018122501 | |
| 29 | 程华,李艳梅,罗谦,等. 基于C4.5决策树方法的到港航班延误预测问题研究[J]. 系统工程理论与实践, 2014, 34(S1):239-247. 10.12011/1000-6788(2014)s1-239 | 
| CHENG H, LI Y M, LUO Q, et al. Study on flight delay with C4.5 decision tree based prediction method[J]. Systems Engineering—Theory and Practice, 2014, 34(S1): 239-247. 10.12011/1000-6788(2014)s1-239 | |
| 30 | 曹卫东,林翔宇. 基于贝叶斯网络的航班过站时间分析与延误预测[J]. 计算机工程与设计, 2011, 32(5):1770-1772, 1776. | 
| CAO W D, LIN X Y. Flight turnaround time analysis and delay prediction based on Bayesian network[J]. Computer Engineering and Design, 2011, 32(5): 1770-1772, 1776. | |
| 31 | 刘彤丹,许梦婷,陈舒伟,等. 基于天气影响的离场航班延误分析及预测[C/OL]// 2019世界交通运输大会论文集. [2021-12-25].. | 
| LIU T D, XU M T, CHEN S W, et al. Analysis and prediction of departure flight delay based on weather impact[C/OL]// Proceedings of the World Transport Convention 2019. [2021-12-25].. | |
| 32 | KIN Y J, CHOI S, BRICENO S, et al. A deep learning approach to flight delay prediction[C]// Proceedings of the 35th IEEE/AIAA Digital Avionics Systems Conference. Piscataway: IEEE, 2016: 1-6. 10.1109/dasc.2016.7778092 | 
| 33 | 屈景怡,叶萌,曹磊. 基于混合编码和长短时记忆网络的机场延误预测方法[J]. 信号处理, 2019, 35(7):1160-1169. | 
| QU J Y, YE M, CAO L. Airport delay prediction method based on hybrid coding and LSTM network[J]. Journal of Signal Processing, 2019, 35(7): 1160-1169. | 
| [1] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. | 
| [2] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. | 
| [3] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. | 
| [4] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. | 
| [5] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. | 
| [6] | Yi LIU, Guoli YANG, Qibin ZHENG, Xiang LI, Yangsen ZHOU, Depeng CHEN. Architecture design of data fusion pipeline for unmanned systems [J]. Journal of Computer Applications, 2024, 44(8): 2536-2543. | 
| [7] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. | 
| [8] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. | 
| [9] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. | 
| [10] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. | 
| [11] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. | 
| [12] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. | 
| [13] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. | 
| [14] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. | 
| [15] | Zhi ZHANG, Xin LI, Naifu YE, Kaixi HU. DKP: defending against model stealing attacks based on dark knowledge protection [J]. Journal of Computer Applications, 2024, 44(7): 2080-2086. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||