Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (10): 3297-3308.DOI: 10.11772/j.issn.1001-9081.2022101471
• Frontier and comprehensive applications • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                                                    Junpeng ZHANG1, Yujie SHI1, Rui JANG1, Jingjing DONG2, Changjian QIU3( )
)
												  
						
						
						
					
				
Received:2022-10-08
															
							
																	Revised:2023-01-23
															
							
																	Accepted:2023-02-03
															
							
							
																	Online:2023-04-12
															
							
																	Published:2023-10-10
															
							
						Contact:
								Changjian QIU   
													About author:ZHANG Junpeng, born in 1975, Ph. D., associate professor. His research interests include ElectroEncephaloGraphy (EEG) based cognitive impairment assessment, electroencephalogram based individual recognition, electroencephalogram assisted diagnosis of mental disorders.Supported by:通讯作者:
					邱昌建
							作者简介:张军鹏(1975—),男,陕西韩城人,副教授,博士,主要研究方向:基于脑电(EEG)的认知障碍评估、脑电图个体识别、脑电图辅助精神障碍诊断基金资助:CLC Number:
Junpeng ZHANG, Yujie SHI, Rui JANG, Jingjing DONG, Changjian QIU. Review on advances in recognition and classification of cognitive impairment based on EEG signals[J]. Journal of Computer Applications, 2023, 43(10): 3297-3308.
张军鹏, 施玉杰, 蒋睿, 董静静, 邱昌建. 基于脑电信号的认知功能障碍识别与分类进展综述[J]. 《计算机应用》唯一官方网站, 2023, 43(10): 3297-3308.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022101471
| 特征类型 | 实验 | 被试人数 | 分类算法 | 准确率/% | |
|---|---|---|---|---|---|
| 区分AD和HC | 区分MCI和HC | ||||
| 时域 | ERP[ | HC:8,MCI:5 | 稀疏分类器 | — | 95.00 | 
| ERP[ | HC:15,MCI:16 | CNN | — | 99.77 | |
| 频域 | 静息态[ | HC:6,MCI:4,AD:4 | 深度玻尔兹曼机 | 95.04 | 95.04 | 
| 静息态[ | HC:10,AD:14 | MLP、KNN、SVM、朴素贝叶斯、决策树 | 96.78 | — | |
| 静息态[ | 共118例,根据认知障碍 程度分为5组 | SVM、KNN | — | 88.00 | |
| 静息态[ | HC:17,AD:19 | 逻辑回归、决策树、SVM、集成分类器 | 95.60 | — | |
| 静息态[ | HC:63,MCI:63,AD:63 | CNN | 92.95 | 91.88 | |
| ERP[ | HC:19,轻度AD:11, 重度AD:10 | LDA、Elman神经网络、CNN | 99.00 | — | |
| 静息态[ | HC:12,AD:22 | SVM | 91.18 | — | |
| 时频 | 静息态[ | HC:63,MCI:63,AD:63 | 自动编码器、MLP、逻辑回归、SVM | 95.76 | — | 
| 静息态[ | HC:11,MCI:8, 中度AD:11,重度AD:8 | 决策树、SVM、ANN | 95.99 | 98.06 | |
| 静息态[ | HC:63,MCI:63,AD:63 | 自动编码器、MLP、逻辑回归、SVM | 96.95 | 96.24 | |
| 静息态[ | HC:36,MCI:35 | SVM | — | 80.00 | |
| 静息态[ | HC:11,MCI:11 | 决策树、KNN、SVM | — | 96.94 | |
| 静息态[ | HC:52,MCI:37,AD:52 | CNN | 99.30 | 98.30 | |
| ERP[ | HC:28,MCI:7 | RNN | — | 91.93 | |
| 静息态[ | HC:16,MCI:37,AD:37 | CNN | 92.70 | 92.70 | |
| 非线性 | ERP[ | HC:5,MCI:10 | 逻辑回归、LDA、SVM、随机森林、前馈神经网络 | — | 80.00 | 
| 静息态[ | HC:16,MCI:11 | ELM、SVM、KNN | — | 98.78 | |
| 脑网络和 功能连接 | 静息态[ | HC:15,AD:15 | SVM、决策树、KNN、朴素贝叶斯分类器 | 96.63 | — | 
| 静息态[ | HC:120,AD:175 | SVM | 95.00 | — | |
| 静息态[ | HC:30,AD:30 | Takagi-Sugeno-Kang模糊模型 | 97.83 | — | |
| 静息态[ | HC:21,MCI:28 | KNN、朴素贝叶斯分类器、SVM、反向传播网络 | — | 90.20 | |
| 静息态[ | HC:20,AD:20 | SVM、KNN、朴素贝叶斯分类器、LDA | 92.50 | — | |
| 时域、频域 | ERP[ | HC:10,MCI:7 | SVM、逻辑回归、随机森林 | — | 87.90 | 
| 静息态[ | HC:15,MCI:15 | SVM、KNN | — | 98.57 | |
| ERP[ | HC:15,MCI:8 | SVM、逻辑回归 | — | 87.90 | |
| 静息态[ | HC:32,MCI:29 | 监督型字典学习 | — | 88.90 | |
| 时域、时频、 非线性 | 静息态[ | HC:35,轻度AD:31, 中度AD:20 | SVM、KNN、LDA | 97.64 | — | 
| 频域、时频 | 静息态[ | HC:27,MCI:24 | SVM、LDA | — | 90.20 | 
| 静息态[ | HC:20,AD:20 | KNN | 90.26 | — | |
| 频域、非线性 | 静息态[ | HC:37,MCI:37,AD:37 | LDA、二次判别分析、MLP | 76.47 | — | 
| 频域、非线性、 功能连接 | 静息态[ | HC:27,MCI:24,AD:23 | SVM、LDA | 78.00 | 80.39 | 
| 频域、时频、 非线性、 功能连接 | 静息态[ | HC:113,MCI:116, AD:72 | LDA、逻辑回归、朴素贝叶斯分类器、SVM、 最近邻分类器、随机森林、集成树 | 72.43 | 59.91 | 
| 时频、 非线性 | 静息态[ | MCI:37,AD:37 | 决策树、朴素贝叶斯分类器、KNN、增强概率神经网络 | — | — | 
| 静息态[ | HC:11,MCI:16,AD:8 | SVM、KNN、决策树、袋装树 | 94.44 | 92.30 | |
| 静息态[ | HC:17,MCI:9,AD:15 | SVM+神经网络 | 95.12 | 97.56 | |
| 非线性、 功能连接 | 静息态[ | HC:21,MCI:28 | ELM | — | 89.78 | 
| 静息态[ | HC:16,AD:18 | SVM | 73.50 | — | |
| 静息态[ | HC:52,MCI:37,AD:52 | CNN | 98.13 | 98.13 | |
Tab. 1 Summary of literature on classification and identification of cognitive impairment
| 特征类型 | 实验 | 被试人数 | 分类算法 | 准确率/% | |
|---|---|---|---|---|---|
| 区分AD和HC | 区分MCI和HC | ||||
| 时域 | ERP[ | HC:8,MCI:5 | 稀疏分类器 | — | 95.00 | 
| ERP[ | HC:15,MCI:16 | CNN | — | 99.77 | |
| 频域 | 静息态[ | HC:6,MCI:4,AD:4 | 深度玻尔兹曼机 | 95.04 | 95.04 | 
| 静息态[ | HC:10,AD:14 | MLP、KNN、SVM、朴素贝叶斯、决策树 | 96.78 | — | |
| 静息态[ | 共118例,根据认知障碍 程度分为5组 | SVM、KNN | — | 88.00 | |
| 静息态[ | HC:17,AD:19 | 逻辑回归、决策树、SVM、集成分类器 | 95.60 | — | |
| 静息态[ | HC:63,MCI:63,AD:63 | CNN | 92.95 | 91.88 | |
| ERP[ | HC:19,轻度AD:11, 重度AD:10 | LDA、Elman神经网络、CNN | 99.00 | — | |
| 静息态[ | HC:12,AD:22 | SVM | 91.18 | — | |
| 时频 | 静息态[ | HC:63,MCI:63,AD:63 | 自动编码器、MLP、逻辑回归、SVM | 95.76 | — | 
| 静息态[ | HC:11,MCI:8, 中度AD:11,重度AD:8 | 决策树、SVM、ANN | 95.99 | 98.06 | |
| 静息态[ | HC:63,MCI:63,AD:63 | 自动编码器、MLP、逻辑回归、SVM | 96.95 | 96.24 | |
| 静息态[ | HC:36,MCI:35 | SVM | — | 80.00 | |
| 静息态[ | HC:11,MCI:11 | 决策树、KNN、SVM | — | 96.94 | |
| 静息态[ | HC:52,MCI:37,AD:52 | CNN | 99.30 | 98.30 | |
| ERP[ | HC:28,MCI:7 | RNN | — | 91.93 | |
| 静息态[ | HC:16,MCI:37,AD:37 | CNN | 92.70 | 92.70 | |
| 非线性 | ERP[ | HC:5,MCI:10 | 逻辑回归、LDA、SVM、随机森林、前馈神经网络 | — | 80.00 | 
| 静息态[ | HC:16,MCI:11 | ELM、SVM、KNN | — | 98.78 | |
| 脑网络和 功能连接 | 静息态[ | HC:15,AD:15 | SVM、决策树、KNN、朴素贝叶斯分类器 | 96.63 | — | 
| 静息态[ | HC:120,AD:175 | SVM | 95.00 | — | |
| 静息态[ | HC:30,AD:30 | Takagi-Sugeno-Kang模糊模型 | 97.83 | — | |
| 静息态[ | HC:21,MCI:28 | KNN、朴素贝叶斯分类器、SVM、反向传播网络 | — | 90.20 | |
| 静息态[ | HC:20,AD:20 | SVM、KNN、朴素贝叶斯分类器、LDA | 92.50 | — | |
| 时域、频域 | ERP[ | HC:10,MCI:7 | SVM、逻辑回归、随机森林 | — | 87.90 | 
| 静息态[ | HC:15,MCI:15 | SVM、KNN | — | 98.57 | |
| ERP[ | HC:15,MCI:8 | SVM、逻辑回归 | — | 87.90 | |
| 静息态[ | HC:32,MCI:29 | 监督型字典学习 | — | 88.90 | |
| 时域、时频、 非线性 | 静息态[ | HC:35,轻度AD:31, 中度AD:20 | SVM、KNN、LDA | 97.64 | — | 
| 频域、时频 | 静息态[ | HC:27,MCI:24 | SVM、LDA | — | 90.20 | 
| 静息态[ | HC:20,AD:20 | KNN | 90.26 | — | |
| 频域、非线性 | 静息态[ | HC:37,MCI:37,AD:37 | LDA、二次判别分析、MLP | 76.47 | — | 
| 频域、非线性、 功能连接 | 静息态[ | HC:27,MCI:24,AD:23 | SVM、LDA | 78.00 | 80.39 | 
| 频域、时频、 非线性、 功能连接 | 静息态[ | HC:113,MCI:116, AD:72 | LDA、逻辑回归、朴素贝叶斯分类器、SVM、 最近邻分类器、随机森林、集成树 | 72.43 | 59.91 | 
| 时频、 非线性 | 静息态[ | MCI:37,AD:37 | 决策树、朴素贝叶斯分类器、KNN、增强概率神经网络 | — | — | 
| 静息态[ | HC:11,MCI:16,AD:8 | SVM、KNN、决策树、袋装树 | 94.44 | 92.30 | |
| 静息态[ | HC:17,MCI:9,AD:15 | SVM+神经网络 | 95.12 | 97.56 | |
| 非线性、 功能连接 | 静息态[ | HC:21,MCI:28 | ELM | — | 89.78 | 
| 静息态[ | HC:16,AD:18 | SVM | 73.50 | — | |
| 静息态[ | HC:52,MCI:37,AD:52 | CNN | 98.13 | 98.13 | |
| 来源 | 特征类型 | 特征值 | 核函数 | 平均准确率/% | 
|---|---|---|---|---|
| 文献[ | 频域、时频、非线性、功能连接 | 相对功率、小波变换特征、排列熵、样本熵、小波熵和LempelZiv复杂度等 | 线性核 | 60.48 | 
| 文献[ | 非线性 | 多尺度熵 | 径向基核 | 80.00 | 
| 文献[ | 非线性 | 自回归阶数和排列熵 | 线性核 | 97.41 | 
| 文献[ | 功能连接 | 小世界参数 | 径向基核 | 95.00 | 
| 文献[ | 非线性、功能连接 | 样本熵、相位滞后指数 | 线性核 | 73.50 | 
| 文献[ | 频域 | 各频段的绝对功率和相对功率 | 径向基核 | 77.75 | 
| 文献[ | 时频 | 各脑电子带的均值、标准差偏度和熵 | 线性核 | 76.13 | 
| 文献[ | 时频 | 各脑电子带的功率谱 | 径向基核 | 62.50 | 
| 文献[ | 脑网络 | 动态和跨频多重脑网络属性 | 径向基核 | 92.50 | 
| 文献[ | 时域、频域 | Pa、P1、N1、P2等ERP成分的波峰和潜伏期、各频段的相对功率 | 径向基核 | 87.90 | 
Tab. 2 Summary of research on recognition and classification of cognitive impairment using SVM
| 来源 | 特征类型 | 特征值 | 核函数 | 平均准确率/% | 
|---|---|---|---|---|
| 文献[ | 频域、时频、非线性、功能连接 | 相对功率、小波变换特征、排列熵、样本熵、小波熵和LempelZiv复杂度等 | 线性核 | 60.48 | 
| 文献[ | 非线性 | 多尺度熵 | 径向基核 | 80.00 | 
| 文献[ | 非线性 | 自回归阶数和排列熵 | 线性核 | 97.41 | 
| 文献[ | 功能连接 | 小世界参数 | 径向基核 | 95.00 | 
| 文献[ | 非线性、功能连接 | 样本熵、相位滞后指数 | 线性核 | 73.50 | 
| 文献[ | 频域 | 各频段的绝对功率和相对功率 | 径向基核 | 77.75 | 
| 文献[ | 时频 | 各脑电子带的均值、标准差偏度和熵 | 线性核 | 76.13 | 
| 文献[ | 时频 | 各脑电子带的功率谱 | 径向基核 | 62.50 | 
| 文献[ | 脑网络 | 动态和跨频多重脑网络属性 | 径向基核 | 92.50 | 
| 文献[ | 时域、频域 | Pa、P1、N1、P2等ERP成分的波峰和潜伏期、各频段的相对功率 | 径向基核 | 87.90 | 
| 算法 | 准确率 | 精确率 | 召回率 | F1值 | 
|---|---|---|---|---|
| SVM | 77.55 | 76.93 | 78.70 | 77.81 | 
| KNN | 76.69 | 77.21 | 75.74 | 76.47 | 
| LDA | 60.97 | 59.13 | 71.01 | 64.53 | 
| 朴素贝叶斯分类 | 70.05 | 66.59 | 80.47 | 72.88 | 
| 决策树 | 70.60 | 70.43 | 71.00 | 70.72 | 
| 随机森林 | 78.48 | 77.00 | 81.07 | 78.98 | 
Tab. 3 Classification accuracies of classical machine learning algorithms and random forest algorithm
| 算法 | 准确率 | 精确率 | 召回率 | F1值 | 
|---|---|---|---|---|
| SVM | 77.55 | 76.93 | 78.70 | 77.81 | 
| KNN | 76.69 | 77.21 | 75.74 | 76.47 | 
| LDA | 60.97 | 59.13 | 71.01 | 64.53 | 
| 朴素贝叶斯分类 | 70.05 | 66.59 | 80.47 | 72.88 | 
| 决策树 | 70.60 | 70.43 | 71.00 | 70.72 | 
| 随机森林 | 78.48 | 77.00 | 81.07 | 78.98 | 
| 1 | UHLHAAS P J, SINGER W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology[J]. Neuron, 2006, 52(1): 155-168. 10.1016/j.neuron.2006.09.020 | 
| 2 | FERREIRA-VIEIRA T H, GUIMARAES I M, SILVA F R, et al. Alzheimer’s disease: targeting the cholinergic system[J]. Current Neuropharmacology, 2016, 14(1): 101-115. 10.2174/1570159x13666150716165726 | 
| 3 | KHATUN S, MORSHED B I, BIDELMAN G M. Single channel EEG time-frequency features to detect Mild Cognitive Impairment[C]// Proceedings of the 2017 IEEE International Symposium on Medical Measurements and Applications. Piscataway: IEEE, 2017: 437-442. 10.1109/memea.2017.7985916 | 
| 4 | WILLIAMS P, WHITE A, MERINO R B, et al. Facial recognition task for the classification of mild cognitive impairment with ensemble sparse classifier[C]// Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2019: 2242-2245. 10.1109/embc.2019.8857203 | 
| 5 | LI Y, XIAO S, LI Y, et al. Classification of Mild Cognitive Impairment from multi-domain features of resting-state EEG[C]// Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2020: 256-259. 10.1109/embc44109.2020.9176053 | 
| 6 | SAFI M S, SAFI S M M. Early detection of Alzheimer’s disease from EEG signals using Hjorth parameters[J]. Biomedical Signal Processing and Control, 2021, 65: No.102338. 10.1016/j.bspc.2020.102338 | 
| 7 | RUIZ-GÓMEZ S J, GÓMEZ C, POZA J, et al. Automated multiclass classification of spontaneous EEG activity in Alzheimer’s disease and mild cognitive impairment[J]. Entropy, 2018, 20(1): No.35. 10.3390/e20010035 | 
| 8 | BI X, WANG H. Early Alzheimer’s disease diagnosis based on EEG spectral images using deep learning[J]. Neural Networks, 2019, 114: 119-135. 10.1016/j.neunet.2019.02.005 | 
| 9 | TRINH T T, TSAI C F, HSIAO Y T, et al. Identifying individuals with mild cognitive impairment using working memory-induced intra-subject variability of resting-state EEGs[J]. Frontiers in Computational Neuroscience, 2021, 15: No.700467. 10.3389/fncom.2021.700467 | 
| 10 | HSIAO Y T, TSAI C F, WU C T, et al. MCI detection using kernel eigen-relative-power features of EEG signals[J]. Actuators, 2021, 10(7): No.152. 10.3390/act10070152 | 
| 11 | 武侠,钟楚鹏,丁玉珑,等. 利用时频分析研究非相位锁定脑电活动[J]. 心理科学进展, 2018, 26(8): 1349-1364. 10.3724/sp.j.1042.2018.01349 | 
| WU X, ZHONG C P, DING Y L, et al. Application of time-frequency analysis in investigating non-phase locked components of EEG[J]. Advances in Psychological Science, 2018, 26(8): 1349-1364. 10.3724/sp.j.1042.2018.01349 | |
| 12 | FISCON G, WEITSCHEK E, CIALINI A, et al. Combining EEG signal processing with supervised methods for Alzheimer’s patients classification[J]. BMC Medical Informatics and Decision Making, 2018, 18: No.35. 10.1186/s12911-018-0613-y | 
| 13 | DURONGBHAN P, ZHAO Y, CHEN L, et al. A dementia classification framework using frequency and time-frequency features based on EEG signals[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(5): 826-835. 10.1109/tnsre.2019.2909100 | 
| 14 | IERACITANO C, MAMMONE N, BRAMANTI A, et al. A time-frequency based machine learning system for brain states classification via EEG signal processing[C]// Proceedings of the 2019 International Joint Conference on Neural Networks. Piscataway: IEEE, 2019: 1-8. 10.1109/ijcnn.2019.8852240 | 
| 15 | RODRIGUES P M, BISPO B C, GARRETT C, et al. Lacsogram: a new EEG tool to diagnose Alzheimer’s disease[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(9): 3384-3395. 10.1109/jbhi.2021.3069789 | 
| 16 | 曹锐. 非线性与复杂网络理论在脑电数据分析中的应用研究[D]. 太原:太原理工大学, 2014: 4-5. | 
| CAO R. Nonlinear and complex network theory in the Application of EEG data analysis research[D]. Taiyuan: Taiyuan University of Technology, 2014: 4-5. | |
| 17 | DING Y, CHU Y, LIU M, et al. Fully automated discrimination of Alzheimer’s disease using resting-state electroencephalography signals[J]. Quantitative Imaging in Medicine and Surgery, 2022, 12(2): 1063-1078. 10.21037/qims-21-430 | 
| 18 | RUTKOWSKI T M, ABE M S, KOMENDZIŃSKI T, et al. Older adult mild cognitive impairment prediction from multiscale entropy EEG patterns in reminiscent interior image working memory paradigm[C]// Proceedings of the 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2021: 6345-6348. 10.1109/embc46164.2021.9629480 | 
| 19 | SIULY S, ALÇIN Ö F, KABIR E, et al. A new framework for automatic detection of patients with mild cognitive impairment using resting-state EEG signals[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(9): 1966-1976. 10.1109/tnsre.2020.3013429 | 
| 20 | ŞEKER M, ÖZBEK Y, YENER G, et al. Complexity of EEG dynamics for early diagnosis of Alzheimer’s disease using permutation entropy neuromarker[J]. Computer Methods and Programs in Biomedicine, 2021, 206: No.106116. 10.1016/j.cmpb.2021.106116 | 
| 21 | AMEZQUITA-SÁNCHEZ J P, MAMMONE N, MORABITO F C, et al. A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer’s disease using EEG signals[J]. Journal of Neuroscience Methods, 2019, 322: 88-95. 10.1016/j.jneumeth.2019.04.013 | 
| 22 | 李莉,陈静静,郑旭媛. 基于同步似然分析的阿尔茨海默症静息态脑电功能连接特性的研究[J]. 生物医学工程学杂志, 2015, 32(5):952-957. 10.7507/1001-5515.20150170 | 
| LI L, CHEN J J, ZHENG X Y. Study on brain functional connectivity using resting state electroencephalogram based on synchronization likelihood in Alzheimer’s disease[J]. Journal of Biomedical Engineering, 2015, 32(5): 952-957. 10.7507/1001-5515.20150170 | |
| 23 | SU R, LI X, LI Z, et al. Constructing biomarker for early diagnosis of aMCI based on combination of multiscale fuzzy entropy and functional brain connectivity[J]. Biomedical Signal Processing and Control, 2021, 70: No.103000. 10.1016/j.bspc.2021.103000 | 
| 24 | SONG Z, DENG B, WANG J, et al. Biomarkers for Alzheimer’s disease defined by a novel brain functional network measure[J]. IEEE Transactions on Biomedical Engineering, 2019, 66(1): 41-49. 10.1109/tbme.2018.2834546 | 
| 25 | VECCHIO F, MIRAGLIA F, ALÙ F, et al. Classification of Alzheimer’s disease with respect to physiological aging with innovative EEG biomarkers in a machine learning implementation[J]. Journal of Alzheimer’s Disease, 2020, 75(4): 1253-1261. 10.3233/jad-200171 | 
| 26 | YU H, ZHU L, CAI L, et al. Identification of Alzheimer’s EEG with a WVG network-based fuzzy learning approach[J]. Frontiers in Neuroscience, 2020, 14: No.641. 10.3389/fnins.2020.00641 | 
| 27 | LI X, YANG C, XIE P, et al. The diagnosis of amnestic mild cognitive impairment by combining the characteristics of brain functional network and support vector machine classifier[J]. Journal of Neuroscience Methods, 2021, 363: No.109334. 10.1016/j.jneumeth.2021.109334 | 
| 28 | NOBUKAWA S, YAMANISHI T, KASAKAWA S, et al. Classification methods based on complexity and synchronization of electroencephalography signals in Alzheimer’s disease[J]. Frontiers in Psychiatry, 2020, 11: No.255. 10.3389/fpsyt.2020.00255 | 
| 29 | TZIMOURTA K D, GIANNAKEAS N, TZALLAS A T, et al. EEG window length evaluation for the detection of Alzheimer’s disease over different brain regions[J]. Brain Sciences, 2019, 9(4): No.81. 10.3390/brainsci9040081 | 
| 30 | FAN M, YANG A C, FUH J L, et al. Topological pattern recognition of severe Alzheimer’s disease via regularized supervised learning of EEG complexity[J]. Frontiers in Neuroscience, 2018, 12: No.685. 10.3389/fnins.2018.00685 | 
| 31 | IERACITANO C, MAMMONE N, HUSSAIN A, et al. A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia[J]. Neural Networks, 2020, 123:176-190. 10.1016/j.neunet.2019.12.006 | 
| 32 | TRAMBAIOLLI L R, SPOLAÔR N, LORENA A C, et al. Feature selection before EEG classification supports the diagnosis of Alzheimer’s disease[J]. Clinical Neurophysiology, 2017, 128(10): 2058-2067. 10.1016/j.clinph.2017.06.251 | 
| 33 | TAVARES G, SAN-MARTIN R, IANOF J N, et al. Improvement in the automatic classification of Alzheimer’s disease using EEG after feature selection[C]// Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics. Piscataway: IEEE, 2019: 1264-1269. 10.1109/smc.2019.8914006 | 
| 34 | CAI L, WEI X, LIU J, et al. Functional integration and segregation in multiplex brain networks for Alzheimer’s disease[J]. Frontiers in Neuroscience, 2020, 14: No.51. 10.3389/fnins.2020.00051 | 
| 35 | KHATUN S, MORSHED B I, BIDELMAN G M. A single-channel EEG-based approach to detect mild cognitive impairment via speech-evoked brain responses[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(5): 1063-1070. 10.1109/tnsre.2019.2911970 | 
| 36 | DeTURE M A, DICKSON D W. The neuropathological diagnosis of Alzheimer’s disease[J]. Molecular Neurodegeneration, 2019, 14: No.32. 10.1186/s13024-019-0333-5 | 
| 37 | WEI J, XIAO W, ZHANG S, et al. Mild cognitive impairment classification convolutional neural network with attention mechanism[C]// Proceedings of the IEEE 16th International Conference on Control and Automation. Piscataway: IEEE, 2020: 1074-1078. 10.1109/icca51439.2020.9264504 | 
| 38 | BETROUNI N, DELVAL A, CHATON L, et al. Electroencephalography-based machine learning for cognitive profiling in Parkinson’s disease: preliminary results[J]. Movement Disorders, 2019, 34(2): 210-217. 10.1002/mds.27528 | 
| 39 | IERACITANO C, MAMMONE N, BRAMANTI A, et al. A Convolutional Neural Network approach for classification of dementia stages based on 2D-spectral representation of EEG recordings[J]. Neurocomputing, 2019, 323: 96-107. 10.1016/j.neucom.2018.09.071 | 
| 40 | MAZROOEI RAD E, AZARNOOSH M, GHOSHUNI M, et al. Diagnosis of mild Alzheimer’s disease by EEG and ERP signals using linear and nonlinear classifiers[J]. Biomedical Signal Processing and Control, 2021, 70: No.103049. 10.1016/j.bspc.2021.103049 | 
| 41 | ZHANG J, GAO Y, HE X, et al. Identifying Parkinson’s disease with mild cognitive impairment by using combined MR imaging and electroencephalogram[J]. European Radiology, 2021, 31(10): 7386-7394. 10.1007/s00330-020-07575-1 | 
| 42 | YIN J, CAO J, SIULY S, et al. An integrated MCI detection framework based on spectral-temporal analysis[J]. International Journal of Automation and Computing, 2019, 16(6): 786-799. 10.1007/s11633-019-1197-4 | 
| 43 | HUGGINS C J, ESCUDERO J, PARRA M A, et al. Deep learning of resting-state electroencephalogram signals for three-class classification of Alzheimer’s disease, mild cognitive impairment and healthy ageing[J]. Journal of Neural Engineering, 2021, 18(4): No.046087. 10.1088/1741-2552/ac05d8 | 
| 44 | SRIDHAR S, MANIAN V. EEG and deep learning based brain cognitive function classification[J]. Computers, 2020, 9(4): No.104. 10.3390/computers9040104 | 
| 45 | FOULADI S, SAFAEI A A, MAMMONE N, et al. Efficient deep neural networks for classification of Alzheimer’s disease and mild cognitive impairment from scalp EEG recordings[J]. Cognitive Computation, 2022, 14(4):1247-1268. 10.1007/s12559-022-10033-3 | 
| 46 | KASHEFPOOR M, RABBANI H, BAREKATAIN M. Supervised dictionary learning of EEG signals for mild cognitive impairment diagnosis[J]. Biomedical Signal Processing and Control, 2019, 53: No.101559. 10.1016/j.bspc.2019.101559 | 
| 47 | OLTU B, AKŞAHIN M F, KIBAROĞLU S. A novel electroencephalography based approach for Alzheimer’s disease and mild cognitive impairment detection[J]. Biomedical Signal Processing and Control, 2021, 63: No.102223. 10.1016/j.bspc.2020.102223 | 
| 48 | SANTOS TOURAL J E, MONTOYA PEDRÓN A, MARAÑÓN REYES E J. Classification among healthy, mild cognitive impairment and Alzheimer’s disease subjects based on wavelet entropy and relative beta and theta power[J]. Pattern Analysis and Applications, 2021, 24(2): 413-422. 10.1007/s10044-020-00910-8 | 
| 49 | DRAGE R, ESCUDERO J, PARRA M A, et al. A novel deep learning approach using AlexNet for the classification of electroencephalograms in Alzheimer’s Disease and Mild Cognitive Impairment[C]// Proceedings of the 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2022: 3175-3178. 10.1109/embc48229.2022.9871497 | 
| 50 | 周志华. 机器学习[M]. 北京:清华大学出版社, 2016:60. | 
| ZHOU Z H. Machine Learning[M]. Beijing: Tsinghua University Press, 2016: 60. | |
| 51 | BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. 10.1023/a:1010933404324 | 
| 52 | ALVI A M, SIULY S, WANG H. A long short-term memory based framework for early detection of mild cognitive impairment from EEG signals[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 7(2): 375-388. 10.1109/tetci.2022.3186180 | 
| 53 | ALVI A M, SIULY S, WANG H, et al. A deep learning based framework for diagnosis of mild cognitive impairment[J]. Knowledge-Based Systems, 2022, 248: No.108815. 10.1016/j.knosys.2022.108815 | 
| 54 | McLAUGHLIN D, KLEE D, MEMMOTT T, et al. Methodology and preliminary data on feasibility of a neurofeedback protocol to improve visual attention to letters in mild Alzheimer’s disease[J]. Contemporary Clinical Trials Communications, 2022, 28: No.100950. 10.1016/j.conctc.2022.100950 | 
| 55 | JIRAYUCHAROENSAK S, ISRASENA P, PAN-NGUM S, et al. A game-based neurofeedback training system to enhance cognitive performance in healthy elderly subjects and in patients with amnestic mild cognitive impairment[J]. Clinical Interventions in Aging, 2019, 14: 347-360. 10.2147/cia.s189047 | 
| 56 | TANVEER M, RICHHARIYA B, KHAN R U, et al. Machine learning techniques for the diagnosis of Alzheimer’s disease: a review[J]. ACM Transactions on Multimedia Computing, Communications and Applications, 2020, 16(1s): No.30. 10.1145/3344998 | 
| 57 | CASSANI R, ESTARELLAS M, SAN-MARTIN R, et al. Systematic review on resting-state EEG for Alzheimer’s disease diagnosis and progression assessment[J]. Disease Markers, 2018, 2018: No.5174815. 10.1155/2018/5174815 | 
| 58 | LAW Z K, TODD C, MEHRARAM R, et al. The role of EEG in the diagnosis, prognosis and clinical correlations of dementia with Lewy bodies — a systematic review[J]. Diagnostics, 2020, 10(9): No.616. 10.3390/diagnostics10090616 | 
| 59 | JESUS B, Jr., CASSANI R, McGEOWN W J, et al. Multimodal prediction of Alzheimer’s disease severity level based on resting-state EEG and structural MRI[J]. Frontiers in Human Neuroscience, 2021, 15: No.700627. 10.3389/fnhum.2021.700627 | 
| 60 | CICALESE A C, LI R, AHMADI M B, et al. An EEG-fNIRS hybridization technique in the four-class classification of Alzheimer’s disease[J]. Journal of Neuroscience Methods, 2020, 336: No.108618. 10.1016/j.jneumeth.2020.108618 | 
| 61 | HO T K K, KIM M, JEON Y, et al. Improving the multi‐class classification of Alzheimer’s disease with machine learning‐based techniques: an EEG-fNIRS hybridization study[J]. Alzheimer’s and Dementia, 2021, 17(S7): No.e057565. 10.1002/alz.057565 | 
| 62 | YANG S, BORNOT J M S, WONG-LIN K, et al. M/EEG-based bio-markers to predict the MCI and Alzheimer’s disease: a review from the ML perspective[J]. IEEE Transactions on Biomedical Engineering, 2019, 66(10): 2924-2935. 10.1109/tbme.2019.2898871 | 
| 63 | RAO S, LI K, WU J, et al. Application of ensemble learning in EEG signal analysis of fatigue driving[J]. Journal of Physics: Conference Series, 2021, 1744(4): No.042193. 10.1088/1742-6596/1744/4/042193 | 
| 64 | MING Y, WU D, WANG Y K, et al. EEG-based drowsiness estimation for driving safety using deep Q-learning[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2021, 5(4): 583-594. 10.1109/tetci.2020.2997031 | 
| [1] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. | 
| [2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. | 
| [3] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. | 
| [4] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. | 
| [5] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. | 
| [6] | Xin YANG, Xueni CHEN, Chunjiang WU, Shijie ZHOU. Short-term traffic flow prediction of urban highway based on variant residual model and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2947-2951. | 
| [7] | Shuai FU, Xiaoying GUO, Ruyi BAI, Tao YAN, Bin CHEN. Age estimation method combining improved CloFormer model and ordinal regression [J]. Journal of Computer Applications, 2024, 44(8): 2372-2380. | 
| [8] | Tong CHEN, Fengyu YANG, Yu XIONG, Hong YAN, Fuxing QIU. Construction method of voiceprint library based on multi-scale frequency-channel attention fusion [J]. Journal of Computer Applications, 2024, 44(8): 2407-2413. | 
| [9] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. | 
| [10] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. | 
| [11] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. | 
| [12] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. | 
| [13] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. | 
| [14] | Zhi ZHANG, Xin LI, Naifu YE, Kaixi HU. DKP: defending against model stealing attacks based on dark knowledge protection [J]. Journal of Computer Applications, 2024, 44(7): 2080-2086. | 
| [15] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||