Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (7): 2001-2009.DOI: 10.11772/j.issn.1001-9081.2022071113
Special Issue: 第39届CCF中国数据库学术会议(NDBC 2022)
• The 39th CCF National Database Conference (NDBC 2022) • Previous Articles Next Articles
Zifang XIA1,2, Yaxin YU1,2(), Ziteng WANG1,2, Jiaqi QIAO1,2
Received:
2022-07-12
Revised:
2022-08-16
Accepted:
2022-08-29
Online:
2023-07-20
Published:
2023-07-10
Contact:
Yaxin YU
About author:
XIA Zifang, born in 1998, M. S. candidate. Her research interests include recommender systems, causal inference.Supported by:
夏子芳1,2, 于亚新1,2(), 王子腾1,2, 乔佳琪1,2
通讯作者:
于亚新
作者简介:
夏子芳(1998—),女,河北邢台人,硕士研究生,主要研究方向:推荐系统、因果推断;基金资助:
CLC Number:
Zifang XIA, Yaxin YU, Ziteng WANG, Jiaqi QIAO. Explainable recommendation mechanism by fusion collaborative knowledge graph and counterfactual inference[J]. Journal of Computer Applications, 2023, 43(7): 2001-2009.
夏子芳, 于亚新, 王子腾, 乔佳琪. 融合协同知识图谱与反事实推理的可解释推荐机制[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2001-2009.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022071113
名称 | 样本数 | ||
---|---|---|---|
MovieLens(100k) | MovieLens(1M) | Book-crossing | |
#用户 | 943 | 6 040 | 17 860 |
#项目 | 1 682 | 2 347 | 14 910 |
#交互 | 100 000 | 1 000 209 | 139 746 |
#实体 | 7 366 | 182 011 | 77 903 |
#关系 | 12 | 12 | 25 |
#三元组 | 15 044 | 1 241 995 | 151 500 |
Tab. 1 Statistics of datasets
名称 | 样本数 | ||
---|---|---|---|
MovieLens(100k) | MovieLens(1M) | Book-crossing | |
#用户 | 943 | 6 040 | 17 860 |
#项目 | 1 682 | 2 347 | 14 910 |
#交互 | 100 000 | 1 000 209 | 139 746 |
#实体 | 7 366 | 182 011 | 77 903 |
#关系 | 12 | 12 | 25 |
#三元组 | 15 044 | 1 241 995 | 151 500 |
推荐模型 | 解释算法 | MovieLens(100k) | MovieLens(1M) | Book-crossing | ||||||
---|---|---|---|---|---|---|---|---|---|---|
保真度/% | CF集大小 | 稀疏度/% | 保真度/% | CF集大小 | 稀疏度/% | 保真度/% | CF集大小 | 稀疏度/% | ||
NCF | Pure FIA | 54.20 | 9.080 4 | 90.36 | 56.24 | 9.000 7 | 90.58 | 51.11 | 9.647 1 | 52.23 |
FIA | 55.97 | 7.986 1 | 91.08 | 57.35 | 7.363 8 | 91.73 | 52.36 | 8.194 0 | 53.85 | |
ECI | 57.30 | 4.730 2 | 93.92 | 58.01 | 4.147 5 | 93.11 | 54.89 | 5.001 4 | 57.99 | |
RCF | Pure Attention | 73.01 | 9.357 6 | 89.96 | 74.52 | 8.845 6 | 90.67 | 71.63 | 9.754 9 | 52.10 |
Attention | 76.99 | 3.548 9 | 95.39 | 76.86 | 3.475 9 | 95.63 | 74.84 | 4.061 8 | 56.74 | |
Pure FIA | 80.75 | 4.852 1 | 93.81 | 81.54 | 4.654 3 | 93.99 | 77.93 | 5.119 7 | 58.09 | |
FIA | 81.64 | 4.149 1 | 95.01 | 81.78 | 4.125 4 | 95.34 | 79.28 | 4.167 3 | 59.20 | |
ECI | 81.86 | 2.832 9 | 96.25 | 82.06 | 2.511 3 | 96.81 | 80.05 | 2.998 1 | 60.03 | |
MTG | Pure FIA | 82.38 | 2.212 4 | 96.87 | 82.52 | 2.038 6 | 97.09 | 80.93 | 2.514 3 | 60.81 |
FIA | 83.07 | 1.713 2 | 97.21 | 83.26 | 1.491 1 | 97.26 | 80.62 | 1.853 7 | 60.52 | |
ECI | 86.75 | 1.0407 | 97.35 | 89.57 | 1.0282 | 97. 52 | 83.43 | 1.0121 | 61.69 |
Tab. 2 Overall performance comparison
推荐模型 | 解释算法 | MovieLens(100k) | MovieLens(1M) | Book-crossing | ||||||
---|---|---|---|---|---|---|---|---|---|---|
保真度/% | CF集大小 | 稀疏度/% | 保真度/% | CF集大小 | 稀疏度/% | 保真度/% | CF集大小 | 稀疏度/% | ||
NCF | Pure FIA | 54.20 | 9.080 4 | 90.36 | 56.24 | 9.000 7 | 90.58 | 51.11 | 9.647 1 | 52.23 |
FIA | 55.97 | 7.986 1 | 91.08 | 57.35 | 7.363 8 | 91.73 | 52.36 | 8.194 0 | 53.85 | |
ECI | 57.30 | 4.730 2 | 93.92 | 58.01 | 4.147 5 | 93.11 | 54.89 | 5.001 4 | 57.99 | |
RCF | Pure Attention | 73.01 | 9.357 6 | 89.96 | 74.52 | 8.845 6 | 90.67 | 71.63 | 9.754 9 | 52.10 |
Attention | 76.99 | 3.548 9 | 95.39 | 76.86 | 3.475 9 | 95.63 | 74.84 | 4.061 8 | 56.74 | |
Pure FIA | 80.75 | 4.852 1 | 93.81 | 81.54 | 4.654 3 | 93.99 | 77.93 | 5.119 7 | 58.09 | |
FIA | 81.64 | 4.149 1 | 95.01 | 81.78 | 4.125 4 | 95.34 | 79.28 | 4.167 3 | 59.20 | |
ECI | 81.86 | 2.832 9 | 96.25 | 82.06 | 2.511 3 | 96.81 | 80.05 | 2.998 1 | 60.03 | |
MTG | Pure FIA | 82.38 | 2.212 4 | 96.87 | 82.52 | 2.038 6 | 97.09 | 80.93 | 2.514 3 | 60.81 |
FIA | 83.07 | 1.713 2 | 97.21 | 83.26 | 1.491 1 | 97.26 | 80.62 | 1.853 7 | 60.52 | |
ECI | 86.75 | 1.0407 | 97.35 | 89.57 | 1.0282 | 97. 52 | 83.43 | 1.0121 | 61.69 |
模型 | 保真度/% | CF集大小 | 稀疏度/% |
---|---|---|---|
NCKG | 59.60 | 4.042 1 | 94.88 |
CKG | 89.40 | 2.731 2 | 96.03 |
CKG+GCN | 93.37 | 1.120 8 | 97.16 |
ERCKCI | 96.69 | 1.0321 | 97.51 |
Tab. 3 Ablation experiment results on MovieLens(100k) dataset (k=10)
模型 | 保真度/% | CF集大小 | 稀疏度/% |
---|---|---|---|
NCKG | 59.60 | 4.042 1 | 94.88 |
CKG | 89.40 | 2.731 2 | 96.03 |
CKG+GCN | 93.37 | 1.120 8 | 97.16 |
ERCKCI | 96.69 | 1.0321 | 97.51 |
1 | KUNKEL J, DONKERS T, MICHAEL L, et al. Let me explain: impact of personal and impersonal explanations on trust in recommender systems [C]// Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. New York: ACM, 2019: No.487. 10.1145/3290605.3300717 |
2 | PEAKE G, WANG J. Explanation mining: post hoc interpretability of latent factor models for recommendation systems [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 2060-2069. 10.1145/3219819.3220072 |
3 | 朱海萍,赵成成,刘启东,等.基于互惠性约束的可解释就业推荐方法[J].计算机研究与发展, 2021, 58(12): 2660-2672. 10.7544/issn1000-1239.2021.20211008 |
ZHU H P, ZHAO C C, LIU Q D, et al. Reciprocal-constrained interpretable job recommendation[J]. Journal of Computer Research and Development, 2021, 58(12): 2660-2672. 10.7544/issn1000-1239.2021.20211008 | |
4 | O'MAHONY M P, HURLEY N J, SILVESTRE G C M. Detecting noise in recommender system databases [C]// Proceedings of the 11th International Conference on Intelligent User Interfaces. New York: ACM, 2006: 109-115. 10.1145/1111449.1111477 |
5 | WANG H W, ZHANG F Z, WANG J L, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems [C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 417-426. 10.1145/3269206.3271739 |
6 | YANG F, LIN N H, WANG S H, et al. Towards interpretation of recommender systems with sorted explanation paths [C]// Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway: IEEE, 2018: 667-676. 10.1109/icdm.2018.00082 |
7 | FENG F L, HUANG W R, HE X N, et al. Should graph convolution trust neighbors? a simple causal inference method [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 1208-1218. 10.1145/3404835.3462971 |
8 | PEARL J, MACKENZIE D. The Book of Why: The New Science of Cause and Effect[M]. New York: Basic Books, 2018: 103-200. |
9 | GHAZIMATIN A, BALALAU O, SAHA ROY R, et al. PRINCE: provider-side interpretability with counterfactual explanations in recommender systems [C]// Proceedings of the 13th International Conference on Web Search and Data Mining. New York: ACM, 2020: 196-204. 10.1145/3336191.3371824 |
10 | TRAN K H, GHAZIMATIN A, SAHA ROY R. Counterfactual explanations for neural recommenders [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 1627-1631. 10.1145/3404835.3463005 |
11 | FRIEDRICH G, ZANKER M. A taxonomy for generating explanations in recommender systems[J]. AI Magazine, 2011, 32(3): 90-98. 10.1609/aimag.v32i3.2365 |
12 | HERLOCKER J L, KONSTAN J A, RIEDL J. Explaining collaborative filtering recommendations [C]// Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work. New York: ACM, 2000: 241-250. 10.1145/358916.358995 |
13 | ABDOLLAHI B, NASRAOUI O. Using explainability for constrained matrix factorization [C]// Proceedings of the 11th ACM Conference on Recommender Systems. New York: ACM, 2017: 79-83. 10.1145/3109859.3109913 |
14 | SINGH J, ANAND A. Posthoc interpretability of learning to rank models using secondary training data[EB/OL]. (2018-06-29) [2021-09-16]. . 10.1145/3471158.3472241 |
15 | SINGH J, ANAND A. Model agnostic interpretability of rankers via intent modelling [C]// Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency. New York: ACM, 2020: 618-628. 10.1145/3351095.3375234 |
16 | ZHANG Y F, LAI G K, ZHANG M, et al. Explicit factor models for explainable recommendation based on phrase-level sentiment analysis [C]// Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2014: 83-92. 10.1145/2600428.2609579 |
17 | CHEN C, ZHANG M, LIU Y Q, et al. Neural attentional rating regression with review-level explanations [C]// Proceedings of the 2018 World Wide Web Conference. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2018: 1583-1592. 10.1145/3178876.3186070 |
18 | XIN X, HE X N, ZHANG Y F, et al. Relational collaborative filtering: Modeling multiple item relations for recommendation [C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 125-134. 10.1145/3331184.3331188 |
19 | WIEGREFFE S, PINTER Y. Attention is not not explanation [C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, PA: ACL, 2019: 11-20. 10.18653/v1/d19-1002 |
20 | JAIN S, WALLACE B C. Attention is not explanation [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1(Long and Short Papers). Stroudsburg, PA: ACL, 2019: 3543-3556. 10.18653/v1/n18-2 |
21 | 阮利,温莎莎,牛易明,等.基于可解释基拆解和知识图谱的深度神经网络可视化[J].计算机学报, 2021, 44(9): 1786-1805. 10.11897/SP.J.1016.2021.01786 |
RUAN L, WEN S S, NIU Y M, et al. Deep neural network visualization based on interpretable basis decomposition and knowledge graph[J]. Chinese Journal of Computers, 2021, 44(9): 1786-1805. 10.11897/SP.J.1016.2021.01786 | |
22 | WANG X, WANG D X, XU C R, et al. Explainable reasoning over knowledge graphs for recommendation [C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 5329-5336. 10.1609/aaai.v33i01.33015329 |
23 | ZHANG Y, XU X R, ZHOU H N, et al. Distilling structured knowledge into embeddings for explainable and accurate recommendation [C]// Proceedings of the 13th International Conference on Web Search and Data Mining. New York: ACM, 2020: 735-743. 10.1145/3336191.3371790 |
24 | RIBEIRO M, SINGH S, GUESTRIN C. “Why should I trust you?”: explaining the predictions of any classifier [C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1135-1144. 10.1145/2939672.2939778 |
25 | TSANG M, CHENG D J, LIU H P, et al. Feature interaction interpretability: a case for explaining ad-recommendation systems via neural interaction detection[EB/OL]. (2020-07-19) [2021-11-05]. . |
26 | SCHÖLKOPF B, LOCATELLO F, BAUER S, et al. Toward causal representation learning[J]. Proceedings of the IEEE, 2021, 109(5): 612-634. 10.1109/jproc.2021.3058954 |
27 | NIU Y L, TANG K H, ZHANG H W, et al. Counterfactual VQA: a cause-effect look at language bias [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 12695-12705. 10.1109/cvpr46437.2021.01251 |
28 | XU S Y, LI Y Q, LIU S C, et al. Learning causal explanations for recommendation[EB/OL]. (2021-02-23) [2022-03-12]. . |
29 | CHENG W Y, SHEN Y Y, HUANG L P, et al. Incorporating interpretability into latent factor models via fast influence analysis [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 885-893. 10.1145/3292500.3330857 |
30 | YUAN H, YU H Y, GUI S R, et al. Explainability in graph neural networks: a taxonomic survey[EB/OL]. (2022-06-01) [2022-06-12]. . 10.48550/arXiv.2012.15445 |
31 | HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering [C]// Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2017: 173-182. 10.1145/3038912.3052569 |
[1] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. |
[2] | Xinrui LIN, Xiaofei WANG, Yan ZHU. Academic anomaly citation group detection based on local extended community detection [J]. Journal of Computer Applications, 2024, 44(6): 1855-1861. |
[3] | Jie GUO, Jiayu LIN, Zuhong LIANG, Xiaobo LUO, Haitao SUN. Recommendation method based on knowledge‑awareness and cross-level contrastive learning [J]. Journal of Computer Applications, 2024, 44(4): 1121-1127. |
[4] | Dapeng XU, Xinmin HOU. Feature selection method for graph neural network based on network architecture design [J]. Journal of Computer Applications, 2024, 44(3): 663-670. |
[5] | Beijing ZHOU, Hairong WANG, Yimeng WANG, Lisi ZHANG, He MA. Recommendation method using knowledge graph embedding propagation [J]. Journal of Computer Applications, 2024, 44(10): 3252-3259. |
[6] | Runchao PAN, Qishan YU, Hongfei XIONG, Zhihui LIU. Collaborative recommendation algorithm based on deep graph neural network [J]. Journal of Computer Applications, 2023, 43(9): 2741-2746. |
[7] | Haodong ZHENG, Hua MA, Yingchao XIE, Wensheng TANG. Knowledge tracing model based on graph neural network blending with forgetting factors and memory gate [J]. Journal of Computer Applications, 2023, 43(9): 2747-2752. |
[8] | Hongjun HENG, Dingcheng YANG. Knowledge enhanced aspect word interactive graph neural network [J]. Journal of Computer Applications, 2023, 43(8): 2412-2419. |
[9] | Kun ZHANG, Fengyu YANG, Fa ZHONG, Guangdong ZENG, Shijian ZHOU. Source code vulnerability detection based on hybrid code representation [J]. Journal of Computer Applications, 2023, 43(8): 2517-2526. |
[10] | Kejun JIN, Hongtao YU, Yiteng WU, Shaomei LI, Jianpeng ZHANG, Honghao ZHENG. Improved defense method for graph convolutional network based on singular value decomposition [J]. Journal of Computer Applications, 2023, 43(5): 1511-1517. |
[11] | Hao SUN, Jian CAO, Haisheng LI, Dianhui MAO. Session-based recommendation model based on enhanced capsule network [J]. Journal of Computer Applications, 2023, 43(4): 1043-1049. |
[12] | Jian CUI, Kailang MA, Yu SUN, Dou WANG, Junliang ZHOU. Deep explainable method for encrypted traffic classification [J]. Journal of Computer Applications, 2023, 43(4): 1151-1159. |
[13] | Lubao LI, Tian CHEN, Fuji REN, Beibei LUO. Bimodal emotion recognition method based on graph neural network and attention [J]. Journal of Computer Applications, 2023, 43(3): 700-705. |
[14] | Yu WANG, Yubo YUAN, Yi GUO, Jiajie ZHANG. Sentiment boosting model for emotion recognition in conversation text [J]. Journal of Computer Applications, 2023, 43(3): 706-712. |
[15] | Xuanyu SUN, Yancui SHI. Session-based recommendation model by graph neural network fused with item influence [J]. Journal of Computer Applications, 2023, 43(12): 3689-3696. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||