1 |
REZAEI S, LIU X. Deep learning for encrypted traffic classification: an overview[J]. IEEE Communications Magazine, 2019, 57(5):76-81. 10.1109/mcom.2019.1800819
|
2 |
VELAN P, ČERMÁK M, ČELEDA P, et al. A survey of methods for encrypted traffic classification and analysis[J]. International Journal of Network Management, 2015, 25(5):355-374. 10.1002/nem.1901
|
3 |
王炜. 网络应用层加密流量识别技术研究[D]. 郑州:信息工程大学, 2014:4-5.
|
|
WANG W. Research on identification of encrypted network application traffic[D]. Zhengzhou: Information Engineering University, 2014:4-5.
|
4 |
WRIGHT C V, COULL S E, MONROSE F. Traffic morphing: an efficient defense against statistical traffic analysis[C/OL]// Proceedings of the 16th Annual Network and Distributed System Security Symposium [2022-01-19]..
|
5 |
于强,霍红卫. 一组提高存储效率的深度包检测算法[J]. 软件学报, 2011, 22(1):149-163. 10.3724/sp.j.1001.2011.03724
|
|
YU Q, HUO H W. Algorithms improving the storage efficiency of deep packet inspection[J] Journal of Software, 2011, 22(1): 149-163. 10.3724/sp.j.1001.2011.03724
|
6 |
WANG W, ZHU M, WANG J L, et al. End-to-end encrypted traffic classification with one-dimensional convolution neural networks[C]// Proceedings of the 2017 IEEE International Conference on Intelligence and Security Informatics. Piscataway: IEEE, 2017: 43-48. 10.1109/isi.2017.8004872
|
7 |
陈雪娇,王攀,俞家辉. 基于卷积神经网络的加密流量识别方法[J]. 南京邮电大学学报(自然科学版), 2018, 38(6):36-41. 10.14132/j.cnki.1673-5439.2018.06.006
|
|
CHEN X J, WANG P, YU J H. Encrypted traffic identification method based on convolutional neural network[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2018, 38(6): 36-41. 10.14132/j.cnki.1673-5439.2018.06.006
|
8 |
LOPEZ-MARTIN M, CARRO B, SANCHEZ-ESGUEVILLAS A, et al. Network traffic classifier with convolutional and recurrent neural networks for Internet of Things[J]. IEEE Access, 2017, 5:18042-18050. 10.1109/access.2017.2747560
|
9 |
LIU C, HE L T, XIONG G, et al. FS-Net: a flow sequence network for encrypted traffic classification[C]// Proceedings of the 2019 IEEE Conference on Computer Communications. Piscataway: IEEE, 2019: 1171-1179. 10.1109/infocom.2019.8737507
|
10 |
LOTFOLLAHI M, JAFARI SIAVOSHANI M, SHIRALI HOSSEIN ZADE R, et al. Deep packet: a novel approach for encrypted traffic classification using deep learning[J]. Soft Computing, 2020, 24(3): 1999-2012. 10.1007/s00500-019-04030-2
|
11 |
QIN T, WANG L, LIU Z L, et al. Robust application identification methods for P2P and VoIP traffic classification in backbone networks[J]. Knowledge-Based Systems, 2015, 82: 152-162. 10.1016/j.knosys.2015.03.002
|
12 |
CHEN Z T, HE K, LI J, et al. Seq2Img: a sequence-to-image based approach towards IP traffic classification using convolutional neural networks[C]// Proceedings of the 2017 IEEE International Conference on Big Data. Piscataway: IEEE, 2017: 1271-1276. 10.1109/bigdata.2017.8258054
|
13 |
SHAPIRA T, SHAVITT Y. FlowPic: encrypted internet traffic classification is as easy as image recognition[C]// Proceedings of the 2019 IEEE Conference on Computer Communications Workshops. Piscataway: IEEE, 2019: 680-687. 10.1109/infcomw.2019.8845315
|
14 |
PRIEBE C E, MARCHETTE D J, DeVINNEY J G, et al. Classification using class cover catch digraphs[J]. Journal of Classification, 2003, 20(1): 3-23. 10.1007/s00357-003-0003-7
|
15 |
BIEN J, TIBSHIRANI B R. Prototype selection for interpretable classification[J]. The Annals of Applied Statistics, 2011, 5(4):2403-2424. 10.1214/11-aoas495
|
16 |
WU C Y, TABAK E G. Prototypal analysis and prototypal regression[EB/OL]. (2017-08-23) [2022-01-20]..
|
17 |
LI O, LIU H, CHEN C F, et al. Deep learning for case-based reasoning through prototypes: a neural network that explains its predictions[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 3530-3537. 10.1609/aaai.v32i1.11771
|
18 |
CHEN C F, LI O, TAO C F, et al. This looks like that: deep learning for interpretable image recognition[C/OL]// Proceedings of the 33rd Conference on Neural Information Processing Systems. [2022-01-23]..
|
19 |
HASE P, CHEN C, LI O, et al. Interpretable image recognition with hierarchical prototypes[C]// Proceedings of the 2019 AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 32-40. 10.1609/hcomp.v7i1.5265
|
20 |
KIM E, KIM S, SEO M, et al. XProtoNet: diagnosis in chest radiography with global and local explanations[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 15714-15723. 10.1109/cvpr46437.2021.01546
|
21 |
ZHOU B L, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2921-2929. 10.1109/cvpr.2016.319
|
22 |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2):336-359. 10.1007/s11263-019-01228-7
|
23 |
CHATTOPADHYAY A, SARKAR A, HOWLADER P, et al. Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks[C]// Proceedings of the 2018 Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2018: 839-847. 10.1109/wacv.2018.00097
|
24 |
OMEIZA D, SPEAKMAN S, CINTAS C, et al. Smooth Grad-CAM++: an enhanced inference level visualization technique for deep convolutional neural network models[EB/OL]. (2019-08-03) [2022-01-20]. . 10.48550/arXiv.1908.01224
|
25 |
WANG H F, WANG Z F, DU M N, et al. Score-CAM: score-weighted visual explanations for convolutional neural networks[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2020: 111-119. 10.1109/cvprw50498.2020.00020
|
26 |
RUBNER Y, TOMASI C, GUIBAS L J. The earth mover’s distance as a metric for image retrieval[J]. International Journal of Computer Vision, 2000, 40(2):99-121.
|
27 |
ZHAO W L, RAO Y M, WANG Z Y, et al. Towards interpretable deep metric learning with structural matching[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9867-9876. 10.1109/iccv48922.2021.00974
|
28 |
ZHANG C, CAI Y J, LIN G S, et al. DeepEMD: few-shot image classification with differentiable earth mover’s distance and structured classifiers[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 12200-12210. 10.1109/cvpr42600.2020.01222
|
29 |
DRAPER-GIL G, LASHKARI A H, MAMUN M S I, et al. Characterization of encrypted and VPN traffic using time-related features[C]// Proceedings of the 2nd International Conference on Information Systems Security and Privacy. Setúbal: SciTePress, 2016:407-414. 10.5220/0005740704070414
|
30 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017:2999-3007. 10.1109/iccv.2017.324
|