Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (11): 3551-3558.DOI: 10.11772/j.issn.1001-9081.2022111727
Special Issue: 网络与通信
• Network and communications • Previous Articles Next Articles
					
						                                                                                                                                                                                                                    Fangxing GENG1,2, Zhuo LI1,2( ), Xin CHEN2
), Xin CHEN2
												  
						
						
						
					
				
Received:2022-11-21
															
							
																	Revised:2023-04-03
															
							
																	Accepted:2023-04-04
															
							
							
																	Online:2023-05-08
															
							
																	Published:2023-11-10
															
							
						Contact:
								Zhuo LI   
													About author:GENG Fangxing, born in 1999, M. S. candidate. His research interests include edge computing.Supported by:通讯作者:
					李卓
							作者简介:耿方兴(1999—),男,河南驻马店人,硕士研究生,主要研究方向:边缘计算基金资助:CLC Number:
Fangxing GENG, Zhuo LI, Xin CHEN. Incentive mechanism design for hierarchical federated learning based on multi-leader Stackelberg game[J]. Journal of Computer Applications, 2023, 43(11): 3551-3558.
耿方兴, 李卓, 陈昕. 基于多领导者Stackelberg博弈的分层联邦学习激励机制设计[J]. 《计算机应用》唯一官方网站, 2023, 43(11): 3551-3558.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022111727
| 参数 | 值 | 参数说明 | 
|---|---|---|
| N | 90 | 移动设备数量 | 
| J | 3 | 边缘服务器数量 | 
| M | 3 | 种群数量 | 
| [2 400,4 800] | 种群m中的总数据量 | |
| 0.001 | 移动设备对信息的获取率 | |
| 0.001 | 种群m中单位数据所产生的计算成本 | |
| 50 | 种群m中单位功率传输的成本 | |
| 0.1 | 种群m中模型数据大小 | |
| 100 | 移动设备训练迭代的轮次 | |
| 10 | 种群m中传输速率 | |
| [3,3.6] | 边缘服务器j收益参数 | |
| 1 | 网络拥塞系数 | |
| [ | 边缘服务器j定价的改变幅度 | 
Tab. 1 Simulation parameters setting
| 参数 | 值 | 参数说明 | 
|---|---|---|
| N | 90 | 移动设备数量 | 
| J | 3 | 边缘服务器数量 | 
| M | 3 | 种群数量 | 
| [2 400,4 800] | 种群m中的总数据量 | |
| 0.001 | 移动设备对信息的获取率 | |
| 0.001 | 种群m中单位数据所产生的计算成本 | |
| 50 | 种群m中单位功率传输的成本 | |
| 0.1 | 种群m中模型数据大小 | |
| 100 | 移动设备训练迭代的轮次 | |
| 10 | 种群m中传输速率 | |
| [3,3.6] | 边缘服务器j收益参数 | |
| 1 | 网络拥塞系数 | |
| [ | 边缘服务器j定价的改变幅度 | 
| 1 | 谭作文,张连福. 机器学习隐私保护研究综述[J]. 软件学报, 2020, 31(7):2127-2156. 10.13328/j.cnki.jos.006052 | 
| TAN Z W, ZHANG L F. Survey on privacy preserving techniques for machine learning[J]. Journal of Software, 2020, 31(7): 2127-2156. 10.13328/j.cnki.jos.006052 | |
| 2 | McMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2017:1273-1282. | 
| 3 | ABAD M S H, OZFATURA E, GÜNDÜZ D, et al. Hierarchical federated learning across heterogeneous cellular networks[C]// Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2020: 8866-8870. 10.1109/icassp40776.2020.9054634 | 
| 4 | TU X, ZHU K, LUONG N C, et al. Incentive mechanisms for federated learning: from economic and game theoretic perspective[J]. IEEE Transactions on Cognitive Communications and Networking, 2022, 8(3): 1566-1593. 10.1109/tccn.2022.3177522 | 
| 5 | TIAN M, CHEN Y, LIU Y, et al. A contract theory based incentive mechanism for federated learning[EB/OL]. (2021-08-12) [2022-08-10].. 10.1007/978-3-031-11748-0_6 | 
| 6 | YU H, LIU Z, LIU Y, et al. A fairness-aware incentive scheme for federated learning[C]// Proceedings of the 2020 AAAI/ACM Conference on AI, Ethics, and Society. New York: ACM, 2020: 393-399. 10.1145/3375627.3375840 | 
| 7 | ZENG R, ZHANG S, WANG J, et al. FMore: an incentive scheme of multi-dimensional auction for federated learning in MEC[C]// Proceedings of the IEEE 40th International Conference on Distributed Computing Systems. Piscataway: IEEE, 2020: 278-288. 10.1109/icdcs47774.2020.00094 | 
| 8 | 李从东,黄浩,张帆顺. 基于演化博弈的领先用户知识共享行为激励机制[J]. 计算机应用, 2021, 41(6):1785-1791. 10.11772/j.issn.1001-9081.2020091449 | 
| LI C D, HUANG H, ZHANG F S. Knowledge sharing behavior incentive mechanism for lead users based on evolutionary game[J]. Journal of Computer Applications, 2021, 41(6): 1785-1791. 10.11772/j.issn.1001-9081.2020091449 | |
| 9 | CHEN Y, ZHANG Y, WANG S, et al. DIM-DS: dynamic incentive model for data sharing in federated learning based on smart contracts and evolutionary game theory[J]. IEEE Internet of Things Journal, 2022, 9(23): 24572-24584. 10.1109/jiot.2022.3191671 | 
| 10 | ZOU Y, FENG S, NIYATO D, et al. Mobile device training strategies in federated learning: an evolutionary game approach[C]// Proceedings of the 2019 IEEE International Conference on Internet of Things/ Green Computing and Communications/ Cyber, Physical and Social Computing/ Smart Data. Piscataway: IEEE, 2019: 874-879. 10.1109/ithings/greencom/cpscom/smartdata.2019.00157 | 
| 11 | 王月平,徐涛. 基于演化博弈的用户接入机制[J]. 计算机应用, 2020, 40(5):1392-1396. 10.11772/j.issn.1001-9081.2019112024 | 
| WANG Y P, XU T. User association mechanism based on evolutionary game[J]. Journal of Computer Applications, 2020, 40(5): 1392-1396. 10.11772/j.issn.1001-9081.2019112024 | |
| 12 | LIM W Y B, NG J S, XIONG Z, et al. Dynamic edge association and resource allocation in self-organizing hierarchical federated learning networks[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(12): 3640-3653. 10.1109/jsac.2021.3118401 | 
| 13 | FENG S, NIYATO D, WANG P, et al. Joint service pricing and cooperative relay communication for federated learning[C]// Proceedings of the 2019 IEEE International Conference on Internet of Things/ Green Computing and Communications/ Cyber, Physical and Social Computing/ Smart Data. Piscataway: IEEE, 2019: 815-820. 10.1109/ithings/greencom/cpscom/smartdata.2019.00148 | 
| 14 | XIAO G, XIAO M, GAO G, et al. Incentive mechanism design for federated learning: a two-stage Stackelberg game approach[C]// Proceedings of the IEEE 26th International Conference on Parallel and Distributed Systems. Piscataway: IEEE, 2020: 148-155. 10.1109/icpads51040.2020.00029 | 
| 15 | KHAN L U, PANDEY S R, TRAN N H, et al. Federated learning for edge networks: resource optimization and incentive mechanism[J]. IEEE Communications Magazine, 2020, 58(10): 88-93. 10.1109/mcom.001.1900649 | 
| 16 | NIE J, LUO J, XIONG Z, et al. A Stackelberg game approach toward socially-aware incentive mechanisms for mobile crowdsensing[J]. IEEE Transactions on Wireless Communications, 2019, 18(1): 724-738. 10.1109/twc.2018.2885747 | 
| 17 | SU Y, FAN W, LIU Y, et al. Game-based pricing and task offloading in mobile edge computing enabled edge-cloud systems[EB/OL]. (2021-01-14) [2022-08-10].. 10.1016/j.comnet.2021.108523 | 
| 18 | ZHAN Y, LI P, QU Z, et al. A learning-based incentive mechanism for federated learning[J]. IEEE Internet of Things Journal, 2020, 7(7): 6360-6368. 10.1109/jiot.2020.2967772 | 
| 19 | GONG X, DUAN L, CHEN X, et al. When social network effect meets congestion effect in wireless networks: data usage equilibrium and optimal pricing[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(2): 449-462. 10.1109/jsac.2017.2659059 | 
| 20 | HAN Z, NIYATO D, SAAD W, et al. Game Theory in Wireless and Communication Networks: Theory, Models, and Applications[M]. Cambridge: Cambridge University Press, 2012: 139-143. 10.1017/cbo9780511895043 | 
| 21 | HOFBAUER J, SIGMUND K. Evolutionary game dynamics[J]. Bulletin of the American Mathematical Society, 2003, 40(4): 479-519. 10.1090/s0273-0979-03-00988-1 | 
| 22 | GAO X, FENG S, NIYATO D, et al. Dynamic access point and service selection in backscatter-assisted RF-powered cognitive networks[J]. IEEE Internet of Things Journal, 2019, 6(5): 8270-8283. 10.1109/jiot.2019.2923566 | 
| 23 | PEJÓ B, TANG Q, BICZÓK G. Together or alone: the price of privacy in collaborative learning[EB/OL]. [2022-08-10].. 10.2478/popets-2019-0019 | 
| 24 | WENG J, WENG J, HUANG H, et al. FedServing: a federated prediction serving framework based on incentive mechanism[C]// Proceedings of the 2021 IEEE Conference on Computer Communications. Piscataway: IEEE, 2021: 1-10. 10.1109/infocom42981.2021.9488807 | 
| 25 | GONDZIO J. Interior point methods 25 years later[J]. European Journal of Operational Research, 2012, 218(3): 587-601. 10.1016/j.ejor.2011.09.017 | 
| 26 | LENG Y, WANG M, MA B, et al. A game-based scheme for resource purchasing and pricing in MEC for Internet of Things[J]. Security and Communication Networks, 2021, 2021: No.1951141. 10.1155/2021/1951141 | 
| 27 | DENG Y, LYU F, REN J, et al. Improving federated learning with quality-aware user incentive and auto-weighted model aggregation[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(12): 4515-4529. 10.1109/tpds.2022.3195207 | 
| 28 | ZHAN Y, ZHANG J, HONG Z, et al. A survey of incentive mechanism design for federated learning[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(2): 1035-1044. | 
| [1] | Tingwei CHEN, Jiacheng ZHANG, Junlu WANG. Random validation blockchain construction for federated learning [J]. Journal of Computer Applications, 2024, 44(9): 2770-2776. | 
| [2] | Sunjie YU, Hui ZENG, Shiyu XIONG, Hongzhou SHI. Incentive mechanism for federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(2): 344-352. | 
| [3] | Peiyao ZHANG, Xiaodong FU. Incentive mechanism of crowdsourcing multi-task assignment against malicious bidding [J]. Journal of Computer Applications, 2024, 44(1): 261-268. | 
| [4] | Yanan PAN, Qingxian PAN, Zhaoyi YU, Jiajing CHU, Song YU. Online incentive mechanism based on quality perception in spatio-temporal crowdsourcing [J]. Journal of Computer Applications, 2023, 43(7): 2091-2099. | 
| [5] | ZHENG Wanbo, CHEN Huimin, WU Yanqing, XIA Yunni. Simulation of information sharing strategy based on emergency rescue [J]. Journal of Computer Applications, 2023, 43(1): 306-311. | 
| [6] | Wenting BI, Haitao LIN, Liqun ZHANG. Moving target defense decision-making algorithm based on multi-stage evolutionary signal game model [J]. Journal of Computer Applications, 2022, 42(9): 2780-2787. | 
| [7] | Youzhi LI, Zhihua HU, Chun CHEN, Peibei YANG, Yajing DONG. Prediction model of transaction pricing in internet freight transport platform based on combination of dual long short-term memory networks [J]. Journal of Computer Applications, 2022, 42(5): 1616-1623. | 
| [8] | GONG Ying, HE Yanting, CAO Cejun. Co-evolutionary simulation regarding emergency logistics in major public health risk governance [J]. Journal of Computer Applications, 2021, 41(9): 2754-2760. | 
| [9] | LI Congdong, HUANG Hao, ZHANG Fanshun. Knowledge sharing behavior incentive mechanism for lead users based on evolutionary game [J]. Journal of Computer Applications, 2021, 41(6): 1785-1791. | 
| [10] | Ying LEI, Wanbo ZHENG, Wei WEI, Yunni XIA, Xiaobo LI, Chengwu LIU, Hong XIE. Task offloading method based on probabilistic performance awareness and evolutionary game strategy in “cloud + edge” hybrid environment [J]. Journal of Computer Applications, 2021, 41(11): 3302-3308. | 
| [11] | WU Guangfu, WANG Yingjun. Secure storage and sharing scheme of internet of vehicles data based on hybrid architecture of blockchain and cloud-edge computing [J]. Journal of Computer Applications, 2021, 41(10): 2885-2892. | 
| [12] | WANG Yueping, XU Tao. User association mechanism based on evolutionary game [J]. Journal of Computer Applications, 2020, 40(5): 1392-1396. | 
| [13] | CHEN Xiuhua, LIU Hui, XIONG Jinbo, MA Rong. Task requirement-oriented user selection incentive mechanism in mobile crowdsensing [J]. Journal of Computer Applications, 2019, 39(8): 2310-2317. | 
| [14] | WANG Xilong, WANG Jicheng, LUO Cheng, TIAN Xiuxia. Evolutionary game model under synergistic effect of time scale and selection preference [J]. Journal of Computer Applications, 2019, 39(6): 1824-1828. | 
| [15] | WANG Yingjie, CAI Zhipeng, TONG Xiangrong, PAN Qingxian, GAO Yang, YIN Guisheng. Online incentive mechanism based on reputation for mobile crowdsourcing system [J]. Journal of Computer Applications, 2016, 36(8): 2121-2127. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||