Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (2): 344-352.DOI: 10.11772/j.issn.1001-9081.2023020244
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Sunjie YU1,2, Hui ZENG1,2, Shiyu XIONG1,2, Hongzhou SHI1()
Received:
2023-03-09
Revised:
2023-04-17
Accepted:
2023-04-21
Online:
2023-08-14
Published:
2024-02-10
Contact:
Hongzhou SHI
About author:
YU Sunjie, born in 1998, M. S. candidate. Her research interests include information security, blockchain.Supported by:
通讯作者:
史红周
作者简介:
余孙婕(1998—),女,浙江宁波人,硕士研究生,主要研究方向:信息安全、区块链基金资助:
CLC Number:
Sunjie YU, Hui ZENG, Shiyu XIONG, Hongzhou SHI. Incentive mechanism for federated learning based on generative adversarial network[J]. Journal of Computer Applications, 2024, 44(2): 344-352.
余孙婕, 曾辉, 熊诗雨, 史红周. 基于生成式对抗网络的联邦学习激励机制[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 344-352.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023020244
方案 | A1 | A2 | A3 | |||
---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
文献[ | 62.2 | 16.9 | 5.8 | 2.9 | 1.1 | 0.9 |
文献[ | 100.0 | 0.0 | 99.4 | 0.0 | 0.1 | 0.1 |
文献[ | 4.9 | 3.3 | 84.9 | 1.2 | 99.6 | 0.3 |
文献[ | 48.7 | 24.3 | 41.3 | 14.3 | 33.7 | 11.9 |
文献[ | 88.5 | 6.1 | 49.8 | 3.6 | 8.2 | 4.6 |
本文方案 | 49.2 | 18.9 | 22.9 | 15.8 | 6.7 | 10.2 |
Tab. 1 Comparison of contribution statistics under several scenarios of participate nodes with different data volumes
方案 | A1 | A2 | A3 | |||
---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
文献[ | 62.2 | 16.9 | 5.8 | 2.9 | 1.1 | 0.9 |
文献[ | 100.0 | 0.0 | 99.4 | 0.0 | 0.1 | 0.1 |
文献[ | 4.9 | 3.3 | 84.9 | 1.2 | 99.6 | 0.3 |
文献[ | 48.7 | 24.3 | 41.3 | 14.3 | 33.7 | 11.9 |
文献[ | 88.5 | 6.1 | 49.8 | 3.6 | 8.2 | 4.6 |
本文方案 | 49.2 | 18.9 | 22.9 | 15.8 | 6.7 | 10.2 |
方案 | B1 | B2 | B3 | |||
---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
文献[ | 41.8 | 21.2 | 31.1 | 17.9 | 56.4 | 25.0 |
文献[ | 86.3 | 6.4 | 84.8 | 9.3 | 22.7 | 11.2 |
文献[ | 85.8 | 8.0 | 76.5 | 9.0 | 21.3 | 11.5 |
文献[ | 42.6 | 17.9 | 27.5 | 24.9 | 35.0 | 35.7 |
文献[ | 73.2 | 17.5 | 71.8 | 16.7 | 32.5 | 20.8 |
本文方案 | 66.0 | 22.7 | 38.3 | 20.3 | 21.1 | 12.6 |
Tab. 2 Comparison of contribution statistics under several scenarios of participate nodes with different data qualities
方案 | B1 | B2 | B3 | |||
---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
文献[ | 41.8 | 21.2 | 31.1 | 17.9 | 56.4 | 25.0 |
文献[ | 86.3 | 6.4 | 84.8 | 9.3 | 22.7 | 11.2 |
文献[ | 85.8 | 8.0 | 76.5 | 9.0 | 21.3 | 11.5 |
文献[ | 42.6 | 17.9 | 27.5 | 24.9 | 35.0 | 35.7 |
文献[ | 73.2 | 17.5 | 71.8 | 16.7 | 32.5 | 20.8 |
本文方案 | 66.0 | 22.7 | 38.3 | 20.3 | 21.1 | 12.6 |
方案 | C1 | C2 | C3 | |||
---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
文献[ | 59.7 | 20.2 | 15.6 | 15.1 | 59.7 | 24.2 |
文献[ | 92.2 | 4.8 | 69.2 | 6.5 | 56.2 | 23.8 |
文献[ | 51.0 | 10.0 | 21.4 | 10.4 | 49.7 | 23.5 |
文献[ | 45.7 | 17.8 | 48.6 | 26.1 | 42.8 | 27.8 |
文献[ | 89.9 | 8.9 | 67.7 | 10.6 | 18.4 | 10.6 |
本文方案 | 38.8 | 22.7 | 31.1 | 22.8 | 41.4 | 21.4 |
Tab. 3 Comparison of contribution statistics under several scenarios of participate nodes with different data distributions
方案 | C1 | C2 | C3 | |||
---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
文献[ | 59.7 | 20.2 | 15.6 | 15.1 | 59.7 | 24.2 |
文献[ | 92.2 | 4.8 | 69.2 | 6.5 | 56.2 | 23.8 |
文献[ | 51.0 | 10.0 | 21.4 | 10.4 | 49.7 | 23.5 |
文献[ | 45.7 | 17.8 | 48.6 | 26.1 | 42.8 | 27.8 |
文献[ | 89.9 | 8.9 | 67.7 | 10.6 | 18.4 | 10.6 |
本文方案 | 38.8 | 22.7 | 31.1 | 22.8 | 41.4 | 21.4 |
样本量 | A1 | A2 | A3 | |||
---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
120 | 53.6 | 18.5 | 30.4 | 18.1 | 15.6 | 7.2 |
300 | 49.2 | 18.9 | 22.9 | 15.8 | 6.7 | 10.2 |
600 | 49.2 | 22.7 | 19.2 | 17.0 | 6.0 | 10.5 |
Tab. 4 Comparison of contribution statistics of participant nodes with different sample volumes
样本量 | A1 | A2 | A3 | |||
---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
120 | 53.6 | 18.5 | 30.4 | 18.1 | 15.6 | 7.2 |
300 | 49.2 | 18.9 | 22.9 | 15.8 | 6.7 | 10.2 |
600 | 49.2 | 22.7 | 19.2 | 17.0 | 6.0 | 10.5 |
有无参与节点数据标签分布 | C1 | C2 | C3 | |||
---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
无 | 54.3 | 29.2 | 39.8 | 29.9 | 31.6 | 26.3 |
有 | 38.8 | 22.7 | 31.1 | 22.8 | 41.4 | 21.4 |
Tab. 5 Comparison of contribution statistics of participant nodes with or without data label distribution
有无参与节点数据标签分布 | C1 | C2 | C3 | |||
---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
无 | 54.3 | 29.2 | 39.8 | 29.9 | 31.6 | 26.3 |
有 | 38.8 | 22.7 | 31.1 | 22.8 | 41.4 | 21.4 |
样本生成算法 | B1 | B2 | B3 | |||
---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
无 | 60.5 | 18.5 | 59.1 | 20.7 | 32.2 | 19.4 |
GAN | 75.5 | 18.0 | 54.4 | 22.8 | 40.5 | 21.5 |
GANT | 66.0 | 22.7 | 38.3 | 20.3 | 21.1 | 12.6 |
Tab. 6 Comparison of node contribution statistics under different sample generation algorithms
样本生成算法 | B1 | B2 | B3 | |||
---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
无 | 60.5 | 18.5 | 59.1 | 20.7 | 32.2 | 19.4 |
GAN | 75.5 | 18.0 | 54.4 | 22.8 | 40.5 | 21.5 |
GANT | 66.0 | 22.7 | 38.3 | 20.3 | 21.1 | 12.6 |
1 | 张志刚, 杨栋枢, 吴红侠. 数据资产价值评估模型研究与应用[J]. 现代电子技术, 2015, 38(20): 44-47,51. 10.3969/j.issn.1004-373X.2015.20.012 |
ZHANG Z G, YANG D S, WU H X. Research and application of data asset value assessment model[J]. Modern Electronics Technique, 2015, 38(20): 44-47,51. 10.3969/j.issn.1004-373X.2015.20.012 | |
2 | 张利娟. “数据二十条”出炉,如何挖掘数据“石油”?[J]. 中国报道, 2023(1): 66-68. |
ZHANG L J. "Data Twenty" released, how to mine data "oil"?[J]. China Report, 2023(1): 66-68. | |
3 | McMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. New York: PMLR, 2017: 1273-1282. |
4 | KUMAR Y, SINGLA R. Federated learning systems for healthcare: Perspective and recent progress[C]// Federated Learning Systems. Studies in Computational Intelligence 965. Cham: Springer, 2021: 141-156. 10.1007/978-3-030-70604-3_6 |
5 | JIANG J C, KANTARCI B, OKTUG S, et al. Federated learning in smart city sensing: challenges and opportunities[J]. Sensors, 2020, 20(21): 6230. 10.3390/s20216230 |
6 | BYRD D, POLYCHRONIADOU A. Differentially private secure multi-party computation for federated learning in financial applications [C]// Proceedings of the 1st ACM International Conference on AI in Finance. New York: ACM, 2020: No. 16. 10.1145/3383455.3422562 |
7 | QU Y, POKHREL S R, GARG S, et al. A blockchained federated learning framework for cognitive computing in industry 4.0 networks[J]. IEEE Transactions on Industrial Informatics, 2020, 17(4): 2964-2973. 10.1109/tii.2020.3007817 |
8 | ZHAN Y, ZHANG J, HONG Z, et al. A survey of incentive mechanism design for federated learning[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(2): 1035-1044. |
9 | ZENG R, ZHANG S, WANG J, et al. FMore: an incentive scheme of multi-dimensional auction for federated learning in MEC[C]// Proceedings of the 2020 IEEE 40th International Conference on Distributed Computing Systems. Piscataway: IEEE, 2020: 278-288. 10.1109/icdcs47774.2020.00094 |
10 | SARIKAYA Y, ERCETIN O. Motivating workers in federated learning: a stackelberg game perspective[J]. IEEE Networking Letters, 2019, 2(1): 23-27. 10.1109/lnet.2019.2947144 |
11 | ZHAN Y, LI P, QU Z, et al. A learning-based incentive mechanism for federated learning[J]. IEEE Internet of Things Journal, 2020, 7(7): 6360-6368. 10.1109/jiot.2020.2967772 |
12 | XU X, LYU Y. Towards building a robust and fair federated learning system [EB/OL]. [2023-03-08]. . |
13 | WANG G, DANG C X, ZHOU Z. Measure contribution of participants in federated learning[C]// Proceedings of the 2019 IEEE International Conference on Big Data. Piscataway: IEEE, 2019: 2597-2604. 10.1109/bigdata47090.2019.9006179 |
14 | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. 10.1145/3422622 |
15 | VONDRICK C, PIRSIAVASH H, TORRALBA A. Generating videos with scene dynamics [C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2016: 613-621. 10.1109/cvpr.2016.18 |
16 | REED S, AKATA Z, YAN X, et al. Generative adversarial text to image synthesis [C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 1060-1069. |
17 | LI J, MONROE W, SHI T, et al. Adversarial learning for neural dialogue generation [EB/OL]. (2017-09-24)[2023-03-08]. . 10.18653/v1/d17-1230 |
18 | XIN B, YANG W, GENG Y, et al. Private FL-GAN: differential privacy synthetic data generation based on federated learning[C]// Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2020: 2927-2931. 10.1109/icassp40776.2020.9054559 |
19 | TABASSUM A, ERBAD A, LEBDA W, et al. FEDGAN-IDS: privacy-preserving IDS using GAN and federated learning[J]. Computer Communications, 2022, 192: 299-310. 10.1016/j.comcom.2022.06.015 |
20 | ZHANG J, ZHANG Q. Stackelberg game for utility-based cooperative cognitive radio networks[C]// Proceedings of the 10th ACM International Symposium on Mobile Ad Hoc Networking and Computing. New York: ACM, 2009: 23-32. 10.1145/1530748.1530753 |
21 | HU R, GONG Y. Trading data for learning: incentive mechanism for on-device federated learning [C]// Proceedings of the 2020 IEEE Global Communications Conference. Piscataway: IEEE, 2020: 1-6. 10.1109/globecom42002.2020.9322475 |
22 | DENG Y, LYU F, REN J, et al. FAIR: quality-aware federated learning with precise user incentive and model aggregation [C]// Proceedings of the 2021 IEEE Conference on Computer Communications. Piscataway: IEEE, 2021: 1-10. 10.1109/infocom42981.2021.9488743 |
23 | HITAJ B, ATENIESE G, PEREZ-CRUZ F. Deep models under the GAN: information leakage from collaborative deep learning [C]// Proceedings of the 2017 ACM SIGSAC conference on computer and communications security. New York: ACM, 2017: 603-618. 10.1145/3133956.3134012 |
24 | KRIZHEVSKY A, HINTON G. Learning multiple layers of features from tiny images[EB/OL]. (2009-04-08)[2023-03-08]. . 10.1016/j.tics.2007.09.004 |
25 | GAO L, LI L, CHEN Y, et al. FIFL: A fair incentive mechanism for federated learning[C]// Proceedings of the 50th International Conference on Parallel Processing. New York: ACM, 2021: No. 82. 10.1145/3472456.3472469 |
26 | LI Y, CHEN C, LIU N, et al. A blockchain-based decentralized federated learning framework with committee consensus[J]. IEEE Network, 2021, 35(1): 234-241. 10.1109/mnet.011.2000263 |
[1] | Tingwei CHEN, Jiacheng ZHANG, Junlu WANG. Random validation blockchain construction for federated learning [J]. Journal of Computer Applications, 2024, 44(9): 2770-2776. |
[2] | Zheyuan SHEN, Keke YANG, Jing LI. Personalized federated learning method based on dual stream neural network [J]. Journal of Computer Applications, 2024, 44(8): 2319-2325. |
[3] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[4] | Xuebin CHEN, Zhiqiang REN, Hongyang ZHANG. Review on security threats and defense measures in federated learning [J]. Journal of Computer Applications, 2024, 44(6): 1663-1672. |
[5] | Wei LUO, Jinquan LIU, Zheng ZHANG. Dual vertical federated learning framework incorporating secret sharing technology [J]. Journal of Computer Applications, 2024, 44(6): 1872-1879. |
[6] | Haoran WANG, Dan YU, Yuli YANG, Yao MA, Yongle CHEN. Domain transfer intrusion detection method for unknown attacks on industrial control systems [J]. Journal of Computer Applications, 2024, 44(4): 1158-1165. |
[7] | Zucuan ZHANG, Xuebin CHEN, Rui GAO, Yuanhuai ZOU. Federated learning client selection method based on label classification [J]. Journal of Computer Applications, 2024, 44(12): 3759-3765. |
[8] | Xuebin CHEN, Changsheng QU. Overview of backdoor attacks and defense in federated learning [J]. Journal of Computer Applications, 2024, 44(11): 3459-3469. |
[9] | Shuaihua ZHANG, Shufen ZHANG, Mingchuan ZHOU, Chao XU, Xuebin CHEN. Malicious traffic detection model based on semi-supervised federated learning [J]. Journal of Computer Applications, 2024, 44(11): 3487-3494. |
[10] | Jie WU, Xuezhong QIAN, Wei SONG. Personalized federated learning based on similarity clustering and regularization [J]. Journal of Computer Applications, 2024, 44(11): 3345-3353. |
[11] | Huan ZHANG, Jingyu WANG, Lixin LIU, Xiaoyu JIANG. Multi-organization collaborative data sharing scheme with dual authorization [J]. Journal of Computer Applications, 2024, 44(10): 3307-3314. |
[12] | Chunyong YIN, Yongcheng ZHOU. Automatically adjusted clustered federated learning for double-ended clustering [J]. Journal of Computer Applications, 2024, 44(10): 3011-3020. |
[13] | Peiyao ZHANG, Xiaodong FU. Incentive mechanism of crowdsourcing multi-task assignment against malicious bidding [J]. Journal of Computer Applications, 2024, 44(1): 261-268. |
[14] | Hui ZHOU, Yuling CHEN, Xuewei WANG, Yangwen ZHANG, Jianjiang HE. Deep shadow defense scheme of federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(1): 223-232. |
[15] | Shaoquan CHEN, Jianping CAI, Lan SUN. Differential privacy generative adversarial network algorithm with dynamic gradient threshold clipping [J]. Journal of Computer Applications, 2023, 43(7): 2065-2072. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||