Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (9): 2665-2672.DOI: 10.11772/j.issn.1001-9081.2022091406
• 2022 10th CCF Conference on Big Data • Previous Articles Next Articles
Jianwen GAN1, Yan CHEN2, Peng ZHOU3, Liang DU1,4()
Received:
2022-09-12
Revised:
2022-10-28
Accepted:
2022-11-07
Online:
2023-09-10
Published:
2023-09-10
Contact:
Liang DU
About author:
GAN Jianwen, born in 1996, M. S. candidate. His research interests include clustering ensemble, data mining.Supported by:
通讯作者:
杜亮
作者简介:
甘舰文(1996—),男,河南商丘人,硕士研究生,主要研究方向:聚类集成、数据挖掘基金资助:
CLC Number:
Jianwen GAN, Yan CHEN, Peng ZHOU, Liang DU. Clustering ensemble algorithm with high-order consistency learning[J]. Journal of Computer Applications, 2023, 43(9): 2665-2672.
甘舰文, 陈艳, 周芃, 杜亮. 基于高阶一致性学习的聚类集成算法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2665-2672.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022091406
数据集 | 样本数 | 特征数 | 类数 |
---|---|---|---|
CSTR | 476 | 1 000 | 4 |
GLIOMA | 50 | 4 434 | 4 |
Prostate | 414 | 6 429 | 9 |
ORL | 400 | 1 024 | 40 |
YALE | 165 | 1 024 | 15 |
Tr41 | 878 | 7 454 | 10 |
Jaffe | 213 | 676 | 10 |
AR | 840 | 768 | 120 |
Tab. 1 Detailed information of datasets
数据集 | 样本数 | 特征数 | 类数 |
---|---|---|---|
CSTR | 476 | 1 000 | 4 |
GLIOMA | 50 | 4 434 | 4 |
Prostate | 414 | 6 429 | 9 |
ORL | 400 | 1 024 | 40 |
YALE | 165 | 1 024 | 15 |
Tr41 | 878 | 7 454 | 10 |
Jaffe | 213 | 676 | 10 |
AR | 840 | 768 | 120 |
数据集 | KM | CSPA | HGPA | MCLA | LWEA | LWGP | RSEC | DREC | SPCE | HCLCE |
---|---|---|---|---|---|---|---|---|---|---|
平均 | 0.552 2 (0.066) | 0.563 8 (0.028) | 0.501 0 (0.032) | 0.592 7 (0.047) | (0.034) | 0.592 6 (0.047) | 0.539 9 (0.068) | 0.604 6 (0.046) | 0.591 5 (0.038) | 0.659 5 (0.031) |
AR | 0.330 1 (0.087) | 0.355 (0.011) | 0.380 7 (0.012) | 0.333 7 (0.115) | (0.013) | 0.364 5 (0.013) | 0.293 8 (0.006) | 0.402 3 (0.007) | 0.349 9 (0.007) | 0.413 6 (0.006) |
CSTR | 0.733 1 (0.087) | 0.680 4 (0.038) | 0.289 7 (0.032) | 0.796 6 (0.029) | 0.801 9 (0.004) | 0.843 2 (0.057) | (0.074) | 0.829 3 (0.071) | 0.804 6 (0.008) | 0.901 9 (0.009) |
GLIOMA | 0.429 2 (0.037) | 0.422 0 (0.033) | (0.031) | 0.408 0 (0.014) | 0.432 0 (0.021) | 0.410 0 (0.030) | 0.400 0 (0.041) | 0.434 (0.010) | 0.434 0 (0.030) | 0.442 0 (0.014) |
Prostate | (0.068) | 0.651 7 (0.012) | 0.561 8 (0.012) | 0.703 4 (0.014) | 0.697 8 (0.004) | 0.698 9 (0.007) | 0.693 1 (0.085) | 0.550 6 (0.069) | 0.697 8 (0.068) | 0.807 6 (0.076) |
Jaffe | 0.760 3 (0.087) | 0.928 6 (0.040) | 0.893 9 (0.048) | 0.933 3 (0.043) | (0.046) | 0.828 2 (0.086) | 0.790 6 (0.065) | 0.927 7 (0.055) | 0.880 3 (0.029) | 0.960 6 (0.013) |
ORL | 0.485 9 (0.032) | 0.572 0 (0.025) | 0.576 8 (0.021) | 0.587 3 (0.012) | 0.573 5 (0.021) | 0.532 8 (0.031) | 0.375 (0.019) | 0.609 0 (0.024) | 0.531 0 (0.066) | (0.019) |
YALE | 0.367 8 (0.034) | 0.391 5 (0.024) | 0.400 6 (0.022) | 0.406 7 (0.021) | 0.404 8 (0.024) | 0.409 7 (0.027) | 0.277 6 (0.037) | (0.026) | 0.365 5 (0.016) | 0.443 6 (0.020) |
Tr41 | 0.570 9 (0.072) | 0.509 3 (0.029) | 0.468 7 (0.033) | 0.572 6 (0.046) | (0.053) | 0.653 5 (0.037) | 0.630 9 (0.054) | 0.650 0 (0.035) | 0.669 5 (0.087) | 0.713 6 (0.045) |
Tab. 2 Comparison of ACC experimental results
数据集 | KM | CSPA | HGPA | MCLA | LWEA | LWGP | RSEC | DREC | SPCE | HCLCE |
---|---|---|---|---|---|---|---|---|---|---|
平均 | 0.552 2 (0.066) | 0.563 8 (0.028) | 0.501 0 (0.032) | 0.592 7 (0.047) | (0.034) | 0.592 6 (0.047) | 0.539 9 (0.068) | 0.604 6 (0.046) | 0.591 5 (0.038) | 0.659 5 (0.031) |
AR | 0.330 1 (0.087) | 0.355 (0.011) | 0.380 7 (0.012) | 0.333 7 (0.115) | (0.013) | 0.364 5 (0.013) | 0.293 8 (0.006) | 0.402 3 (0.007) | 0.349 9 (0.007) | 0.413 6 (0.006) |
CSTR | 0.733 1 (0.087) | 0.680 4 (0.038) | 0.289 7 (0.032) | 0.796 6 (0.029) | 0.801 9 (0.004) | 0.843 2 (0.057) | (0.074) | 0.829 3 (0.071) | 0.804 6 (0.008) | 0.901 9 (0.009) |
GLIOMA | 0.429 2 (0.037) | 0.422 0 (0.033) | (0.031) | 0.408 0 (0.014) | 0.432 0 (0.021) | 0.410 0 (0.030) | 0.400 0 (0.041) | 0.434 (0.010) | 0.434 0 (0.030) | 0.442 0 (0.014) |
Prostate | (0.068) | 0.651 7 (0.012) | 0.561 8 (0.012) | 0.703 4 (0.014) | 0.697 8 (0.004) | 0.698 9 (0.007) | 0.693 1 (0.085) | 0.550 6 (0.069) | 0.697 8 (0.068) | 0.807 6 (0.076) |
Jaffe | 0.760 3 (0.087) | 0.928 6 (0.040) | 0.893 9 (0.048) | 0.933 3 (0.043) | (0.046) | 0.828 2 (0.086) | 0.790 6 (0.065) | 0.927 7 (0.055) | 0.880 3 (0.029) | 0.960 6 (0.013) |
ORL | 0.485 9 (0.032) | 0.572 0 (0.025) | 0.576 8 (0.021) | 0.587 3 (0.012) | 0.573 5 (0.021) | 0.532 8 (0.031) | 0.375 (0.019) | 0.609 0 (0.024) | 0.531 0 (0.066) | (0.019) |
YALE | 0.367 8 (0.034) | 0.391 5 (0.024) | 0.400 6 (0.022) | 0.406 7 (0.021) | 0.404 8 (0.024) | 0.409 7 (0.027) | 0.277 6 (0.037) | (0.026) | 0.365 5 (0.016) | 0.443 6 (0.020) |
Tr41 | 0.570 9 (0.072) | 0.509 3 (0.029) | 0.468 7 (0.033) | 0.572 6 (0.046) | (0.053) | 0.653 5 (0.037) | 0.630 9 (0.054) | 0.650 0 (0.035) | 0.669 5 (0.087) | 0.713 6 (0.045) |
数据集 | KM | CSPA | HGPA | MCLA | LWEA | LWGP | RSEC | DREC | SPCE | HCLCE |
---|---|---|---|---|---|---|---|---|---|---|
平均 | 0.472 6 (0.059) | 0.519 1 (0.025) | 0.448 1 (0.029) | 0.545 9 (0.087) | 0.554 0 (0.024) | 0.546 7 (0.030) | 0.491 4 (0.073) | (0.069) | 0.546 3 (0.058) | 0.604 9 (0.034) |
AR | 0.639 0 (0.064) | 0.701 5 (0.004) | 0.703 9 (0.006) | 0.687 8 (0.005) | 0.674 8 (0.007) | 0.682 5 (0.009) | 0.582 8 (0.015) | 0.691 1 (0.007) | 0.727 9 (0.002) | (0.005) |
CSTR | 0.639 0 (0.064) | 0.503 7 (0.041) | 0.015 0 (0.016) | 0.673 4 (0.019) | 0.690 2 (0.008) | 0.718 3 (0.043) | (0.044) | 0.710 0 (0.071) | 0.670 3 (0.018) | 0.771 8 (0.021) |
GLIOMA | 0.167 3 (0.040) | (0.037) | 0.165 1 (0.023) | 0.150 8 (0.030) | 0.160 5 (0.022) | 0.146 9 (0.030) | 0.106 1 (0.036) | 0.170 5 (0.009) | 0.155 0 (0.028) | 0.182 0 (0.020) |
Prostate | (0.091) | 0.081 0 (0.013) | 0.128 0 (0.005) | 0.112 4 (0.013) | 0.107 3 (0.003) | 0.107 3 (0.003) | 0.118 3 (0.075) | 0.080 3 (0.084) | 0.107 3 (0.030) | 0.257 7 (0.104) |
Jaffe | 0.471 8 (0.087) | 0.910 5 (0.033) | 0.883 4 (0.041) | 0.923 4 (0.028) | 0.922 5 (0.029) | 0.877 5 (0.040) | 0.840 8 (0.059) | (0.055) | 0.873 8 (0.022) | 0.947 3 (0.014) |
ORL | 0.689 8 (0.020) | 0.749 9 (0.012) | 0.761 6 (0.008) | 0.753 4 (0.006) | 0.761 6 (0.009) | 0.727 0 (0.016) | 0.586 0 (0.016) | 0.774 1 (0.024) | (0.005) | 0.759 7 (0.006) |
YALE | 0.420 6 (0.031) | 0.443 2 (0.014) | (0.020) | 0.448 2 (0.014) | 0.438 1 (0.024) | 0.452 2 (0.025) | 0.299 6 (0.045) | 0.486 6 (0.045) | 0.457 0 (0.046) | 0.502 7 (0.011) |
Tr41 | 0.589 6 (0.053) | 0.587 4 (0.015) | 0.480 5 (0.037) | 0.618 4 (0.031) | 0.677 3 (0.030) | 0.662 0 (0.023) | 0.645 6 (0.037) | 0.663 9 (0.035) | 0.612 8 (0.096) | 0.713 6 (0.025) |
Tab. 3 Comparison of NMI experimental result
数据集 | KM | CSPA | HGPA | MCLA | LWEA | LWGP | RSEC | DREC | SPCE | HCLCE |
---|---|---|---|---|---|---|---|---|---|---|
平均 | 0.472 6 (0.059) | 0.519 1 (0.025) | 0.448 1 (0.029) | 0.545 9 (0.087) | 0.554 0 (0.024) | 0.546 7 (0.030) | 0.491 4 (0.073) | (0.069) | 0.546 3 (0.058) | 0.604 9 (0.034) |
AR | 0.639 0 (0.064) | 0.701 5 (0.004) | 0.703 9 (0.006) | 0.687 8 (0.005) | 0.674 8 (0.007) | 0.682 5 (0.009) | 0.582 8 (0.015) | 0.691 1 (0.007) | 0.727 9 (0.002) | (0.005) |
CSTR | 0.639 0 (0.064) | 0.503 7 (0.041) | 0.015 0 (0.016) | 0.673 4 (0.019) | 0.690 2 (0.008) | 0.718 3 (0.043) | (0.044) | 0.710 0 (0.071) | 0.670 3 (0.018) | 0.771 8 (0.021) |
GLIOMA | 0.167 3 (0.040) | (0.037) | 0.165 1 (0.023) | 0.150 8 (0.030) | 0.160 5 (0.022) | 0.146 9 (0.030) | 0.106 1 (0.036) | 0.170 5 (0.009) | 0.155 0 (0.028) | 0.182 0 (0.020) |
Prostate | (0.091) | 0.081 0 (0.013) | 0.128 0 (0.005) | 0.112 4 (0.013) | 0.107 3 (0.003) | 0.107 3 (0.003) | 0.118 3 (0.075) | 0.080 3 (0.084) | 0.107 3 (0.030) | 0.257 7 (0.104) |
Jaffe | 0.471 8 (0.087) | 0.910 5 (0.033) | 0.883 4 (0.041) | 0.923 4 (0.028) | 0.922 5 (0.029) | 0.877 5 (0.040) | 0.840 8 (0.059) | (0.055) | 0.873 8 (0.022) | 0.947 3 (0.014) |
ORL | 0.689 8 (0.020) | 0.749 9 (0.012) | 0.761 6 (0.008) | 0.753 4 (0.006) | 0.761 6 (0.009) | 0.727 0 (0.016) | 0.586 0 (0.016) | 0.774 1 (0.024) | (0.005) | 0.759 7 (0.006) |
YALE | 0.420 6 (0.031) | 0.443 2 (0.014) | (0.020) | 0.448 2 (0.014) | 0.438 1 (0.024) | 0.452 2 (0.025) | 0.299 6 (0.045) | 0.486 6 (0.045) | 0.457 0 (0.046) | 0.502 7 (0.011) |
Tr41 | 0.589 6 (0.053) | 0.587 4 (0.015) | 0.480 5 (0.037) | 0.618 4 (0.031) | 0.677 3 (0.030) | 0.662 0 (0.023) | 0.645 6 (0.037) | 0.663 9 (0.035) | 0.612 8 (0.096) | 0.713 6 (0.025) |
数据集 | 不同阶的ACC | ||||
---|---|---|---|---|---|
M1 | M2 | M3 | M4 | M | |
平均 | 0.669 8(0.035) | 0.658 1(0.040) | 0.442 0(0.053) | 0.684 3(0.031) | |
AR | 0.412 7(0.009) | 0.404 6(0.008) | 0.262 3(0.094) | 0.413 6(0.006) | |
CSTR | 0.878 3(0.042) | 0.899 4(0.011) | 0.475 2(0.111) | 0.901 9(0.009) | |
GLIOMA | 0.434 0(0.017) | 0.438 0(0.015) | 0.408 0(0.055) | 0.442 0(0.014) | |
Prostate | 0.760 7(0.084) | 0.775 3(0.084) | 0.721 3(0.105) | 0.807 6(0.076) | |
Jaffe | 0.933 3(0.052) | 0.945 5(0.040) | 0.454 5(0.082) | 0.960 6(0.013) | |
ORL | 0.581 5(0.032) | 0.562 5(0.012) | 0.224 0(0.005) | 0.593 0(0.019) | |
YALE | 0.414 5(0.020) | 0.415 8(0.015) | 0.247 3(0.062) | 0.443 6(0.020) | |
Tr41 | 0.677 9(0.038) | 0.642 6(0.003) | 0.720 4(0.043) | 0.360 5(0.026) |
Tab. 4 ACC Comparison at different leves before and after information fusion
数据集 | 不同阶的ACC | ||||
---|---|---|---|---|---|
M1 | M2 | M3 | M4 | M | |
平均 | 0.669 8(0.035) | 0.658 1(0.040) | 0.442 0(0.053) | 0.684 3(0.031) | |
AR | 0.412 7(0.009) | 0.404 6(0.008) | 0.262 3(0.094) | 0.413 6(0.006) | |
CSTR | 0.878 3(0.042) | 0.899 4(0.011) | 0.475 2(0.111) | 0.901 9(0.009) | |
GLIOMA | 0.434 0(0.017) | 0.438 0(0.015) | 0.408 0(0.055) | 0.442 0(0.014) | |
Prostate | 0.760 7(0.084) | 0.775 3(0.084) | 0.721 3(0.105) | 0.807 6(0.076) | |
Jaffe | 0.933 3(0.052) | 0.945 5(0.040) | 0.454 5(0.082) | 0.960 6(0.013) | |
ORL | 0.581 5(0.032) | 0.562 5(0.012) | 0.224 0(0.005) | 0.593 0(0.019) | |
YALE | 0.414 5(0.020) | 0.415 8(0.015) | 0.247 3(0.062) | 0.443 6(0.020) | |
Tr41 | 0.677 9(0.038) | 0.642 6(0.003) | 0.720 4(0.043) | 0.360 5(0.026) |
1 | WANG F, WANG X, LI T. Generalized cluster aggregation[C]// Proceedings of the 21st International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc., 2009:1279-1284. |
2 | ZHOU J, ZHENG H C, PAN L L. Ensemble clustering based on dense representation[J]. Neurocomputing, 2019: 357:66-76. 10.1016/j.neucom.2019.04.078 |
3 | STREHL A, GHOSH J. Cluster ensembles — a knowledge reuse framework for combining multiple partitions[J]. Journal of Machine Learning Research, 2003, 3: 583-617. |
4 | TOPCHY A, JAIN A K, PUNCH W. A mixture model for clustering ensembles[C]// Proceedings of the 2004 SIAM International Conference on Data Mining. Philadelphia, PA: SIAM, 2004: 379-390. 10.1137/1.9781611972740.35 |
5 | WU J J, LIU H F, XIONG H, et al. A theoretic framework of K-means-based consensus clustering[C]// Proceedings of the 23rd International Joint Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2013:1799-1805. |
6 | WANG H J, SHAN H H, BANERJEE A. Bayesian cluster ensembles[C]// Proceedings of the 2009 SIAM International Conference on Data Mining. Philadelphia, PA: SIAM, 2009: 211-222. 10.1137/1.9781611972795.19 |
7 | ABBASI S O, NEJATIAN S, PARVIN H, et al. Clustering ensemble selection considering quality and diversity[J]. Artificial Intelligence Review, 2019, 52(2): 1311-1340. 10.1007/s10462-018-9642-2 |
8 | BAGHERINIA A, MINAEI-BIDGOLI B, HOSSINZADEH M, et al. Elite fuzzy clustering ensemble based on clustering diversity and quality measures[J]. Applied Intelligence, 2019, 49(5): 1724-1747. 10.1007/s10489-018-1332-x |
9 | AZIMI J, FERN X. Adaptive cluster ensemble selection[C]// Proceedings of the 21st International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc., 2009:992-97. 10.1137/1.9781611972788.71 |
10 | HONG Y, KWONG S., WANG H L, et al. Resampling-based selective clustering ensembles[J]. Pattern Recognition Letters, 2009, 30(3):298-305. 10.1016/j.patrec.2008.10.007 |
11 | PARVIN H, MINAEI-BIDGOLI B. A clustering ensemble framework based on elite selection of weighted clusters[J]. Advances in Data Analysis and Classification, 2013, 7(2): 181-208. 10.1007/s11634-013-0130-x |
12 | YU Z W, LI L, GAO Y J, et al. Hybrid clustering solution selection strategy[J]. Pattern Recognition, 2014, 47(10): 3362-3375. 10.1016/j.patcog.2014.04.005 |
13 | ZHAO X W, LIANG J Y, DANG C Y. Clustering ensemble selection for categorical data based on internal validity indices[J]. Pattern Recognition, 2017, 69:150-168. 10.1016/j.patcog.2017.04.019 |
14 | SHI Y F, YU Z W, CHEN C L P, et al. Transfer clustering ensemble selection[J]. IEEE Transactions on Cybernetics, 2020, 50(6):2872-2885. 10.1109/tcyb.2018.2885585 |
15 | LI F J, QIAN Y H, WANG J T, et al. Multi-granulation information fusion: a Dempster-Shafer evidence theory based clustering ensemble method[J]. Information Sciences, 2017, 378:389-409. 10.1016/j.ins.2016.10.008 |
16 | HUANG D, LAI J H, WANG C D. Robust ensemble clustering using probability trajectories[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(5): 1312-1326. 10.1109/tkde.2015.2503753 |
17 | SHI J B, MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905. 10.1109/34.868688 |
18 | KARYPIS G, KUMAR V. A fast and high quality multilevel scheme for partitioning irregular graphs[J]. SIAM Journal on Scientific Computing, 1998, 20(1): 359-392. 10.1137/s1064827595287997 |
19 | NIE F P, WANG X Q, HUANG H. Clustering and projected clustering with adaptive neighbors[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 977-986. 10.1145/2623330.2623726 |
20 | von NEUMANN J. Functional Operators (AM-22), Volume 2: The Geometry of Orthogonal Spaces[M]. Princeton, NJ: Princeton University Press, 1951: 2-2. 10.1515/9781400882250 |
21 | WANG X Q, NIE F P, HUANG H. Structured doubly stochastic matrix for graph-based clustering: structured doubly stochastic matrix[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016:1245-1254. 10.1145/2939672.2939805 |
22 | FAN K. On a theorem of Weyl concerning eigenvalues of linear transformations. I* [J]. Proceedings of the National Academy of Sciences of the United States of America, 1949, 35(11):652-655. 10.1073/pnas.35.11.652 |
23 | HUANG D, WANG C D, LAI J H. Locally weighted ensemble clustering[J]. IEEE Transactions on Cybernetics, 2018, 48(5): 1460-1473. 10.1109/tcyb.2017.2702343 |
24 | TAO Z Q, LIU H F, LI S, et al. Robust spectral ensemble clustering via rank minimization[J]. ACM Transactions on Knowledge Discovery from Data, 2019, 13(1): No.4. 10.1145/3278606 |
25 | ZHOU P, DU L, LIU X W, et al. Self-paced clustering ensemble[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(4):1497-1511. 10.1109/tnnls.2020.2984814 |
[1] | Jingxin LIU, Wenjing HUANG, Liangsheng XU, Chong HUANG, Jiansheng WU. Unsupervised feature selection model with dictionary learning and sample correlation preservation [J]. Journal of Computer Applications, 2024, 44(12): 3766-3775. |
[2] | Tian HE, Zongxin SHEN, Qianqian HUANG, Yanyong HUANG. Adaptive learning-based multi-view unsupervised feature selection method [J]. Journal of Computer Applications, 2023, 43(9): 2657-2664. |
[3] | Xiaoyu ZHANG, Ziqiang YU, Chengdong LIU, Bohan LI, Changfeng JING. Spatial-temporal co-occurrence pattern mining algorithm for video data [J]. Journal of Computer Applications, 2023, 43(8): 2330-2337. |
[4] | Chunmao JIANG, Peng WU, Zhicong LI. Semi-supervised three-way clustering ensemble based on Seeds set and pairwise constraints [J]. Journal of Computer Applications, 2023, 43(5): 1481-1488. |
[5] | Zhifeng MA, Junyang YU, Longge WANG. Diversity represented deep subspace clustering algorithm [J]. Journal of Computer Applications, 2023, 43(2): 407-412. |
[6] | Yu YANG, Weiwei DUAN. Spectral clustering based dynamic community discovery algorithm in social network [J]. Journal of Computer Applications, 2023, 43(10): 3129-3135. |
[7] | ZHANG Cheng, WAN Yuan, QIANG Haopeng. Deep unsupervised discrete cross-modal hashing based on knowledge distillation [J]. Journal of Computer Applications, 2021, 41(9): 2523-2531. |
[8] | LYU Yali, MIAO Junzhong, HU Weixin. Semi-supervised learning algorithm of graph based on label metric learning [J]. Journal of Computer Applications, 2020, 40(12): 3430-3436. |
[9] | SONG Yan, YIN Jun. Multi-view spectral clustering algorithm based on shared nearest neighbor [J]. Journal of Computer Applications, 2020, 40(11): 3211-3216. |
[10] | ZHANG Xiaobo, YANG Yan, LI Tianrui, LU Fan, PENG Lilan. Early diagnosis and prediction of Parkinson's disease based on clustering medical text data [J]. Journal of Computer Applications, 2020, 40(10): 3088-3094. |
[11] | YANG Yanlin, YE Zhonglin, ZHAO Haixing, MENG Lei. Link prediction algorithm based on high-order proximity approximation [J]. Journal of Computer Applications, 2019, 39(8): 2366-2373. |
[12] | XU Zhanyang, ZHENG Kezhang. Clustering ensemble algorithms based on improved genetic algorithm in cloud computing [J]. Journal of Computer Applications, 2018, 38(2): 458-463. |
[13] | WANG Na, WANG Xiaofeng, GENG Guohua, SONG Qiannan. Semi-supervised classification algorithm based on C-means clustering and graph transduction [J]. Journal of Computer Applications, 2017, 37(9): 2595-2599. |
[14] | CHU Zheng, YU Jiong, WANG Jiayu, WANG Yuefei. Construction method of mobile application similarity matrix based on latent Dirichlet allocation topic model [J]. Journal of Computer Applications, 2017, 37(4): 1075-1082. |
[15] | DU Zhenglin, LI Yun. Online feature selection based on feature clustering ensemble technology [J]. Journal of Computer Applications, 2017, 37(3): 866-870. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||