Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (5): 1481-1488.DOI: 10.11772/j.issn.1001-9081.2022071094
Special Issue: 数据科学与技术
• Data science and technology • Previous Articles Next Articles
Chunmao JIANG1, Peng WU2, Zhicong LI2()
Received:
2022-07-19
Revised:
2022-10-03
Accepted:
2022-11-04
Online:
2023-05-08
Published:
2023-05-10
Contact:
Zhicong LI
About author:
JIANG Chunmao, born in 1972, Ph. D., professor. His research interests include three-way decision and three-way computing, cloud computing, big data mining.Supported by:
通讯作者:
李志聪
作者简介:
姜春茂(1972—),男,辽宁庄河人,教授,博士,CCF高级会员,主要研究方向:三支决策与三支计算、云计算、大数据挖掘基金资助:
CLC Number:
Chunmao JIANG, Peng WU, Zhicong LI. Semi-supervised three-way clustering ensemble based on Seeds set and pairwise constraints[J]. Journal of Computer Applications, 2023, 43(5): 1481-1488.
姜春茂, 吴鹏, 李志聪. 基于Seeds集和成对约束的半监督三支聚类集成[J]. 《计算机应用》唯一官方网站, 2023, 43(5): 1481-1488.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022071094
数据集 | 样本数 | 属性数 | 分类数 |
---|---|---|---|
Glass | 214 | 9 | 6 |
Wine | 178 | 13 | 3 |
Iris | 150 | 4 | 3 |
Segment | 2 310 | 19 | 7 |
Ionosphere | 351 | 34 | 2 |
Bank | 1 372 | 4 | 2 |
Sonar | 208 | 60 | 2 |
Tab. 1 Information description of experimental datasets
数据集 | 样本数 | 属性数 | 分类数 |
---|---|---|---|
Glass | 214 | 9 | 6 |
Wine | 178 | 13 | 3 |
Iris | 150 | 4 | 3 |
Segment | 2 310 | 19 | 7 |
Ionosphere | 351 | 34 | 2 |
Bank | 1 372 | 4 | 2 |
Sonar | 208 | 60 | 2 |
数据集 | CSPA | HGPA | MCLA | LPA | Cop-Kmeans | CPSSSCE | STWCE |
---|---|---|---|---|---|---|---|
Segment | 0.803 | 0.823 | 0.816 | 0.791 | 0.691 | 0.504 | 0.825 |
Iris | 0.833 | 0.770 | 0.810 | 0.714 | 0.801 | 0.830 | 0.885 |
Wine | 0.762 | 0.781 | 0.863 | 0.712 | 0.864 | 0.853 | 0.863 |
Glass | 0.318 | 0.278 | 0.434 | 0.267 | 0.248 | 0.277 | 0.477 |
Ionosphere | 0.339 | 0.387 | 0.170 | 0.310 | 0.257 | 0.473 | 0.476 |
Bank | 0.793 | 0.790 | 0.939 | 0.764 | 0.193 | 0.862 | 0.951 |
Sonar | 0.183 | 0.136 | 0.122 | 0.114 | 0.129 | 0.209 | 0.227 |
Tab. 2 ARI values of different algorithms
数据集 | CSPA | HGPA | MCLA | LPA | Cop-Kmeans | CPSSSCE | STWCE |
---|---|---|---|---|---|---|---|
Segment | 0.803 | 0.823 | 0.816 | 0.791 | 0.691 | 0.504 | 0.825 |
Iris | 0.833 | 0.770 | 0.810 | 0.714 | 0.801 | 0.830 | 0.885 |
Wine | 0.762 | 0.781 | 0.863 | 0.712 | 0.864 | 0.853 | 0.863 |
Glass | 0.318 | 0.278 | 0.434 | 0.267 | 0.248 | 0.277 | 0.477 |
Ionosphere | 0.339 | 0.387 | 0.170 | 0.310 | 0.257 | 0.473 | 0.476 |
Bank | 0.793 | 0.790 | 0.939 | 0.764 | 0.193 | 0.862 | 0.951 |
Sonar | 0.183 | 0.136 | 0.122 | 0.114 | 0.129 | 0.209 | 0.227 |
数据集 | CSPA | HGPA | MCLA | LPA | Cop-Kmeans | CPSSSCE | STWCE |
---|---|---|---|---|---|---|---|
Segment | 0.834 | 0.843 | 0.843 | 0.824 | 0.691 | 0.594 | 0.852 |
Iris | 0.816 | 0.777 | 0.870 | 0.745 | 0.795 | 0.805 | 0.870 |
Wine | 0.746 | 0.694 | 0.824 | 0.722 | 0.847 | 0.841 | 0.824 |
Glass | 0.438 | 0.396 | 0.470 | 0.435 | 0.356 | 0.427 | 0.500 |
Ionosphere | 0.305 | 0.353 | 0.212 | 0.331 | 0.360 | 0.416 | 0.432 |
Bank | 0.747 | 0.743 | 0.893 | 0.683 | 0.139 | 0.909 | 0.919 |
Sonar | 0.141 | 0.105 | 0.109 | 0.130 | 0.096 | 0.158 | 0.182 |
Tab. 3 NMI values of different algorithms
数据集 | CSPA | HGPA | MCLA | LPA | Cop-Kmeans | CPSSSCE | STWCE |
---|---|---|---|---|---|---|---|
Segment | 0.834 | 0.843 | 0.843 | 0.824 | 0.691 | 0.594 | 0.852 |
Iris | 0.816 | 0.777 | 0.870 | 0.745 | 0.795 | 0.805 | 0.870 |
Wine | 0.746 | 0.694 | 0.824 | 0.722 | 0.847 | 0.841 | 0.824 |
Glass | 0.438 | 0.396 | 0.470 | 0.435 | 0.356 | 0.427 | 0.500 |
Ionosphere | 0.305 | 0.353 | 0.212 | 0.331 | 0.360 | 0.416 | 0.432 |
Bank | 0.747 | 0.743 | 0.893 | 0.683 | 0.139 | 0.909 | 0.919 |
Sonar | 0.141 | 0.105 | 0.109 | 0.130 | 0.096 | 0.158 | 0.182 |
数据集 | CSPA | HGPA | MCLA | LPA | Cop-Kmeans | CPSSSCE | STWCE |
---|---|---|---|---|---|---|---|
Segment | 0.898 | 0.912 | 0.907 | 0.889 | 0.741 | 0.653 | 0.914 |
Iris | 0.939 | 0.833 | 0.891 | 0.876 | 0.906 | 0.904 | 0.959 |
Wine | 0.908 | 0.899 | 0.918 | 0.907 | 0.954 | 0.949 | 0.956 |
Glass | 0.475 | 0.475 | 0.660 | 0.452 | 0.360 | 0.428 | 0.685 |
Ionosphere | 0.787 | 0.807 | 0.616 | 0.748 | 0.749 | 0.811 | 0.824 |
Bank | 0.945 | 0.944 | 0.984 | 0.932 | 0.715 | 0.958 | 0.987 |
Sonar | 0.716 | 0.687 | 0.653 | 0.674 | 0.680 | 0.727 | 0.740 |
Tab. 4 F-measure values of different algorithms
数据集 | CSPA | HGPA | MCLA | LPA | Cop-Kmeans | CPSSSCE | STWCE |
---|---|---|---|---|---|---|---|
Segment | 0.898 | 0.912 | 0.907 | 0.889 | 0.741 | 0.653 | 0.914 |
Iris | 0.939 | 0.833 | 0.891 | 0.876 | 0.906 | 0.904 | 0.959 |
Wine | 0.908 | 0.899 | 0.918 | 0.907 | 0.954 | 0.949 | 0.956 |
Glass | 0.475 | 0.475 | 0.660 | 0.452 | 0.360 | 0.428 | 0.685 |
Ionosphere | 0.787 | 0.807 | 0.616 | 0.748 | 0.749 | 0.811 | 0.824 |
Bank | 0.945 | 0.944 | 0.984 | 0.932 | 0.715 | 0.958 | 0.987 |
Sonar | 0.716 | 0.687 | 0.653 | 0.674 | 0.680 | 0.727 | 0.740 |
1 | STREHL A, GHOSH J. Cluster ensembles — a knowledge reuse framework for combining multiple partitions[J]. Journal of Machine Learning Research, 2003, 3: 583-617. |
2 | ZHOU Z H, TANG W. Cluster ensemble[J]. Knowledge-Based Systems, 2006, 19(1): 77-83. 10.1016/j.knosys.2005.11.003 |
3 | FRED A L N, JAIN A K. Combining multiple clusterings using evidence accumulation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6): 835-850. 10.1109/tpami.2005.113 |
4 | WANG Z, WANG S, BAI L, et al. Semisupervised fuzzy clustering with fuzzy pairwise constraints[J]. IEEE Transactions on Fuzzy Systems, 2022, 30(9): 3797-3811. 10.1109/tfuzz.2021.3129848 |
5 | MA T H, ZHENG Z, GUO L, et al. Semi-supervised selective clustering ensemble based on constraint information[J]. Neurocomputing, 2021, 462: 412-425. 10.1016/j.neucom.2021.07.056 |
6 | XIAO W, YANG Y, WANG H, et al. Semi-supervised hierarchical clustering ensemble and its application[J]. Neurocomputing, 2016, 173(Pt 3): 1362-1376. 10.1016/j.neucom.2015.09.009 |
7 | YU H, WANG Y. Three-way decisions method for overlapping clustering[C]// Proceedings of the 2012 International Conference on Rough Sets and Current Trends in Computing, LNCS 7413. Berlin: Springer, 2012: 277-286. |
8 | WANG P X, YAO Y Y. CE3: a three-way clustering method based on mathematical morphology[J]. Knowledge-Based Systems, 2018, 155: 54-65. 10.1016/j.knosys.2018.04.029 |
9 | YU H, CHEN L Y, YAO J T. A three-way density peak clustering method based on evidence theory[J]. Knowledge-Based Systems, 2021, 211: No.106532. 10.1016/j.knosys.2020.106532 |
10 | AFRIDI M K, AZAM N, YAO J T, et al. A three-way clustering approach for handling missing data using GTRS[J]. International Journal of Approximate Reasoning, 2018, 98: 11-24. 10.1016/j.ijar.2018.04.001 |
11 | YU H, WANG X C, WANG G Y, et al. An active three-way clustering method via low-rank matrices for multi-view data[J]. Information Sciences, 2020, 507: 823-839. 10.1016/j.ins.2018.03.009 |
12 | JIANG C M, LI Z C, YAO J T. A shadowed set-based three-way clustering ensemble approach[J]. International Journal of Machine Learning and Cybernetics, 2022, 13(9): 2545-2558. 10.1007/s13042-022-01543-5 |
13 | CUI S Z, WANG Y Z, YIN Y Q, et al. A cluster-based intelligence ensemble learning method for classification problems[J]. Information Sciences, 2021, 560: 386-409. 10.1016/j.ins.2021.01.061 |
14 | TOPCHY A, JAIN A K, PUNCH W. A mixture model for clustering ensembles[C]// Proceedings of the 2004 SIAM International Conference on Data Mining. Philadelphia, PA: SIAM, 2004: 379-390. 10.1137/1.9781611972740.35 |
15 | 唐伟,周志华. 基于Bagging的选择性聚类集成[J]. 软件学报, 2005, 16(4):496-502. 10.1360/jos160496 |
TANG W, ZHOU Z H. Bagging-based selective clusterer ensemble[J]. Journal of Software, 2005, 16(4): 496-502. 10.1360/jos160496 | |
16 | MA T H, YU T, WU X G, et al. Multiple clustering and selecting algorithms with combining strategy for selective clustering ensemble[J]. Soft Computing, 2020, 24(20): 15129-15141. 10.1007/s00500-020-05264-1 |
17 | RASHIDI F, NEJATIAN S, PARVIN H, et al. Diversity based cluster weighting in cluster ensemble: an information theory approach[J]. Artificial Intelligence Review, 2019, 52(2): 1341-1368. 10.1007/s10462-019-09701-y |
18 | GHAEMI R, SULAIMAN M N, IBRAHIM H, et al. A survey: clustering ensembles techniques[J]. Proceedings of World Academy of Science, Engineering and Technology, 2009, 38: 644-653. 10.1109/itng.2010.88 |
19 | WAGSTAFF K, CARDIE C, ROGERS S, et al. Constrained k-means clustering with background knowlege [C]// Proceedings of the Eighteenth International Conference on Machine Learning.San Francisco, CA: Morgan Kaufmann Publishers Inc., 2001: 577-584. |
20 | ZHENG L, LI T. Semi-supervised hierarchical clustering[C]// Proceedings of the IEEE 11th International Conference on Data Mining. Piscataway: IEEE, 2011: 982-991. 10.1109/icdm.2011.130 |
21 | YANG Y, RUTAYISIRE T, LIN C, et al. An improved Cop-Kmeans clustering for solving constraint violation based on MapReduce framework[J]. Fundamenta Informaticae, 2013, 126(4): 301-318. 10.3233/fi-2013-883 |
22 | QIN Y, DING S F, WANG L J, et al. Research progress on semi-supervised clustering[J]. Cognitive Computation, 2019, 11(5): 599-612. 10.1007/s12559-019-09664-w |
23 | ZHOU D Y, BOUSQUET O, LAL T N, et al. Learning with local and global consistency[C]// Proceedings of the 16th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2003: 321-328. |
24 | YU H, ZHANG C, WANG G Y. A tree-based incremental overlapping clustering method using the three-way decision theory[J]. Knowledge-Based Systems, 2016, 91: 189-203. 10.1016/j.knosys.2015.05.028 |
25 | FANG X, XU Y, LI X, et al. Robust semi-supervised subspace clustering via non-negative low-rank representation[J]. IEEE Transactions on Cybernetics, 2016, 46(8): 1828-1838. 10.1002/cpe.5359 |
YANG J, SUN L, WU Q. Constraint projections for semi-supervised spectral clustering ensemble [J]. Concurrency and Computation Practice and Experience, 2019, 31(20): e5359. 10.1002/cpe.5359 |
[1] | Yingjun ZHANG, Niuniu LI, Binhong XIE, Rui ZHANG, Wangdong LU. Semi-supervised object detection framework guided by curriculum learning [J]. Journal of Computer Applications, 2024, 44(8): 2326-2333. |
[2] | Yan ZHOU, Yang LI. Rectified cross pseudo supervision method with attention mechanism for stroke lesion segmentation [J]. Journal of Computer Applications, 2024, 44(6): 1942-1948. |
[3] | Shuaihua ZHANG, Shufen ZHANG, Mingchuan ZHOU, Chao XU, Xuebin CHEN. Malicious traffic detection model based on semi-supervised federated learning [J]. Journal of Computer Applications, 2024, 44(11): 3487-3494. |
[4] | Zhaoze GAO, Xiaofei ZHU, Nengqiang XIANG. Semi-supervised stance detection based on category-aware curriculum learning [J]. Journal of Computer Applications, 2024, 44(10): 3281-3287. |
[5] | Jianwen GAN, Yan CHEN, Peng ZHOU, Liang DU. Clustering ensemble algorithm with high-order consistency learning [J]. Journal of Computer Applications, 2023, 43(9): 2665-2672. |
[6] | Ruiqi WANG, Shujuan JI, Ning CAO, Yajie GUO. Semi-supervised fake job advertisement detection model based on consistency training [J]. Journal of Computer Applications, 2023, 43(9): 2932-2939. |
[7] | Boyi FU, Yuncong PENG, Xin LAN, Xiaolin QIN. Survey of label noise learning algorithms based on deep learning [J]. Journal of Computer Applications, 2023, 43(3): 674-684. |
[8] | Jinye LI, Ruizhang HUANG, Yongbin QIN, Yanping CHEN, Xiaoyu TIAN. Recognition of sentencing circumstances in adjudication documents based on abductive learning [J]. Journal of Computer Applications, 2022, 42(6): 1802-1807. |
[9] | Yongru QIU, Guangle YAO, Jie FENG, Haoyu CUI. Single image de-raining algorithm based on semi-supervised learning [J]. Journal of Computer Applications, 2022, 42(5): 1577-1582. |
[10] | Yuchang YIN, Hongyuan WANG, Li CHEN, Zundeng FENG, Yu XIAO. One-shot video-based person re-identification with multi-loss learning and joint metric [J]. Journal of Computer Applications, 2022, 42(3): 764-769. |
[11] | Kaiqiang YUE, Bo LI, Panlong FAN. Air combat maneuver decision method based on three-way decision [J]. Journal of Computer Applications, 2022, 42(2): 616-621. |
[12] | Yu LU, Lingyun ZHAO, Binwen BAI, Zhen JIANG. Imbalanced classification algorithm based on improved semi-supervised clustering [J]. Journal of Computer Applications, 2022, 42(12): 3750-3755. |
[13] | Jie WU, Shitian ZHANG, Haibin XIE, Guang YANG. Semi-supervised knee abnormality classification based on multi-imaging center MRI data [J]. Journal of Computer Applications, 2022, 42(1): 316-324. |
[14] | MAO Mingze, CAO Ruihao, YAN Chungang. Semi-supervised classification algorithm based on weight diversity [J]. Journal of Computer Applications, 2021, 41(9): 2473-2480. |
[15] | ZHANG Shipeng, LI Yongzhong, DU Xiangtong. Intrusion detection model based on semi-supervised learning and three-way decision [J]. Journal of Computer Applications, 2021, 41(9): 2602-2608. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||