Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (7): 2285-2293.DOI: 10.11772/j.issn.1001-9081.2023071003
• Frontier and comprehensive applications • Previous Articles Next Articles
Huaxia LI1, Xiaorong HUANG1,2,3, Anlin SHEN1,2,3, Peng JIANG1, Yiqiang PENG1,2,3(), Liqi SUI4
Received:
2023-07-25
Revised:
2023-09-26
Accepted:
2023-09-28
Online:
2023-10-26
Published:
2024-07-10
Contact:
Yiqiang PENG
About author:
LI Huaxia, born in 1998, M. S. candidate. His research interests include motion control of wheeled mobile robot.Supported by:
李华夏1, 黄晓蓉1,2,3, 沈安林1,2,3, 蒋鹏1, 彭忆强1,2,3(), 隋立起4
通讯作者:
彭忆强
作者简介:
李华夏(1998—),男,四川成都人,硕士研究生,主要研究方向:轮式移动机器人运动控制;基金资助:
CLC Number:
Huaxia LI, Xiaorong HUANG, Anlin SHEN, Peng JIANG, Yiqiang PENG, Liqi SUI. Trajectory tracking of caster-type omnidirectional mobile platform based on MPC and PID[J]. Journal of Computer Applications, 2024, 44(7): 2285-2293.
李华夏, 黄晓蓉, 沈安林, 蒋鹏, 彭忆强, 隋立起. 基于MPC和PID的脚轮式全向移动平台轨迹跟踪[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2285-2293.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023071003
参数 | 含义 |
---|---|
世界坐标系 | |
机器人坐标系 | |
脚轮式全向移动平台的横坐标位置 | |
脚轮式全向移动平台的纵坐标位置 | |
脚轮式全向移动平台的朝向角 | |
沿 | |
沿 | |
脚轮式全向移动平台自转角速度 |
Tab. 1 Explanation of symbolic parameters for three-degree-of-freedom kinematic model of the platform
参数 | 含义 |
---|---|
世界坐标系 | |
机器人坐标系 | |
脚轮式全向移动平台的横坐标位置 | |
脚轮式全向移动平台的纵坐标位置 | |
脚轮式全向移动平台的朝向角 | |
沿 | |
沿 | |
脚轮式全向移动平台自转角速度 |
符号 | 参数含义 | 取值 |
---|---|---|
车轮中心 | ||
转向轴中心 | ||
轮地接触点 | ||
脚轮 | ||
脚轮 | ||
脚轮 | ||
脚轮 | ||
脚轮半径 | 0.1 m | |
转向轴中心与轮心的偏置距离 | 0.15 m | |
转向轴中心与平台中心连线长度 | 0.5 m | |
转向轴中心与平台中心连线与X轴的夹角 | ||
平台中心点的速度矢量 |
Tab. 2 Kinematic model parameters of platform under robot coordinate system
符号 | 参数含义 | 取值 |
---|---|---|
车轮中心 | ||
转向轴中心 | ||
轮地接触点 | ||
脚轮 | ||
脚轮 | ||
脚轮 | ||
脚轮 | ||
脚轮半径 | 0.1 m | |
转向轴中心与轮心的偏置距离 | 0.15 m | |
转向轴中心与平台中心连线长度 | 0.5 m | |
转向轴中心与平台中心连线与X轴的夹角 | ||
平台中心点的速度矢量 |
方向 | |||
---|---|---|---|
平行方向 | |||
垂直方向 |
Tab. 3 Speed orthogonal decomposition table for caster-type omnidirectional mobile platform
方向 | |||
---|---|---|---|
平行方向 | |||
垂直方向 |
控制器 | 参数 | 作用 |
---|---|---|
位姿控制器 | 影响控制系统对轨迹跟踪的精确度和行驶稳定性 | |
影响系统的响应速度 | ||
影响控制系统执行算法的速率 | ||
保证控制系统对参考轨迹的跟踪精度 | ||
保证控制系统较为平稳的控制平台跟踪上参考轨迹 | ||
速度控制器 | 减少系统的偏差 | |
消除静差,提高系统的无差度 | ||
反映系统偏差的变化趋势,加快系统的响应 |
Tab. 4 Role description of key parameters of MPC and PID double closed-loop control strategy
控制器 | 参数 | 作用 |
---|---|---|
位姿控制器 | 影响控制系统对轨迹跟踪的精确度和行驶稳定性 | |
影响系统的响应速度 | ||
影响控制系统执行算法的速率 | ||
保证控制系统对参考轨迹的跟踪精度 | ||
保证控制系统较为平稳的控制平台跟踪上参考轨迹 | ||
速度控制器 | 减少系统的偏差 | |
消除静差,提高系统的无差度 | ||
反映系统偏差的变化趋势,加快系统的响应 |
1 | EL-SHENAWY A, WELLENREUTHER A, BAUMGART A S, et al. Comparing different holonomic mobile robots [C]// Proceedings of the 2007 IEEE International Conference on Systems, Man and Cybernetics. Piscataway: IEEE, 2007: 1584-1589. |
2 | CAO G, ZHAO X, YE C, et al. Fuzzy adaptive PID control method for multi-mecanum-wheeled mobile robot [J]. Journal of Mechanical Science and Technology, 2022, 36: 2019-2029. |
3 | ZHANG B, LI G, ZHENG Q, et al. Path planning for wheeled mobile robot in partially known uneven terrain [J]. Sensors, 2022, 22(14): 5217. |
4 | MONDAL S, RAY R, REDDY S, et al. Intelligent controller for nonholonomic wheeled mobile robot: a fuzzy path following combination [J]. Mathematics and Computers in Simulation, 2022, 193: 533-555. |
5 | ZHANG D, WANG G, WU Z. Reinforcement learning-based tracking control for a three mecanum wheeled mobile robot [J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(1): 1445-1452. |
6 | EL-SHENAWY A, WAGNER A, BADREDDIN E. Kinematics and dynamics analysis for a holonomic wheeled mobile robot [C]// Proceedings of the 4th International Conference on Informatics in Control, Automation and Robotics. Angers, France: INSTICC Press, 2007: 485-491. |
7 | EL-SHENAWY A, WAGNER A, BADREDDIN E. Dynamic model of a holonomic mobile robot with actuated caster wheels [C]// Proceedings of the 2006 9th International Conference on Control, Automation, Robotics and Vision. Piscataway: IEEE, 2006: 1-6. |
8 | EL-SHENAWY A, WAGNER A, BADREDDIN E. Solving the singularity problem for a holonomic mobile robot [J]. IFAC Proceedings Volumes, 2006, 39(16): 151-156. |
9 | EL-SHENAWY A, WAGNER A, BADREDDIN E. Controlling a holonomic mobile robot with singularities [C]// Proceedings of the 6th World Congress on Intelligent Control and Automation. Piscataway: IEEE, 2006: 8270-8274. |
10 | EL-SHENAWY A, WAGNER A, BADREDDIN E. Inverse dynamic solution for holonomic wheeled mobile robot with modular wheel actuation [C]// Proceedings of the 2007 European Control Conference. Piscataway: IEEE, 2007: 5486-5491. |
11 | EL-SHENAWY A, WAGNER A, BADREDDIN E. Practical construction and position control of a modular actuated holonomic wheeled mobile robot [C]// Proceedings of the 2008 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2008: 1672-1677. |
12 | 张天宇,彭忆强,黄晓蓉,等.脚轮式全向移动平台的运动控制设计与仿真[J].中国测试, 2021, 47(7): 109-118, 124. |
ZHANG T Y, PENG Y Q, HUANG X R, et al. Motion control and simulation of caster wheeled omnidirectional mobile platform [J]. China Measurement & Testing Technology, 2021, 47(7): 109-118, 124. | |
13 | 黄晓蓉,张天宇,彭忆强,等.脚轮式全向移动平台负载变化时速度跟踪控制[J].西华大学学报(自然科学版), 2023, 42(2): 1-12, 19. |
HUANG X R, ZHANG T Y, PENG Y Q, et al. Speed tracking control of caster-type omnidirectional mobile platform with variable load [J]. Journal of Xihua University (Natural Science Edition), 2023, 42(2): 1-12, 19. | |
14 | ZHANG Z, CHEN S, XU J, et al. Off-line identification of dynamic parameters of omnidirectional mobile robot based on decoupled powered caster wheels [C]// Proceedings of the 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway: IEEE, 2022: 1321-1326. |
15 | JIANG S, LI Z, LIN S, et al. Design, control and experiments of an agile omnidirectional mobile robot with active suspension [C]// Proceedings of the 2022 IEEE 18th International Conference on Automation Science and Engineering. Piscataway: IEEE, 2022: 913-918. |
16 | YU Q, YANG G, DENG Y, et al. Energy-efficient trajectory planning for omnidirectional mobile robots with improved WDO algorithm [C]// Proceedings of the 2022 IEEE 17th Conference on Industrial Electronics and Applications. Piscataway: IEEE, 2022: 1116-1121. |
17 | MEDINA O, HACOHEN S. Overcoming kinematic singularities for motion control in a caster wheeled omnidirectional robot [J]. Robotics, 2021, 10(4): 133. |
18 | 张俊娜,白国星.基于速度调节与路径跟踪的差动机器人运动控制[J].工程科学学报, 2023, 45(9): 1550-1558. |
ZHANG J N, BAI G X. Motion control of differential robot based on speed adjusting and path tracking [J]. Chinese Journal of Engineering, 2023, 45(9): 1550-1558. | |
19 | 杜荣华,胡鸿飞,高凯,等.基于变预测时域MPC的自动驾驶汽车轨迹跟踪控制研究[J].机械工程学报, 2022, 58(24): 275-288. |
DU R H, HU H F, GAO K, et al. Research on trajectory tracking control of autonomous vehicle based on MPC with variable predictive horizon [J]. Journal of Mechanical Engineering, 2022, 58(24): 275-288. | |
20 | 许洋,秦小林,刘佳,等.多无人机自适应编队协同航迹规划[J].计算机应用, 2020, 40(5): 1515-1521. |
XU Y, QIN X L, LIU J, et al. Multi-unmanned aerial vehicle adaptive formation cooperative trajectory planning [J]. Journal of Computer Applications, 2020, 40(5): 1515-1521. | |
21 | 王书亭,付清晨,蒋立泉,等.考虑绕障时耗的四轮全向移动机器人轨迹跟踪控制[J].华中科技大学学报(自然科学版), 2023, 51(6): 1-9. |
WANG S T, FU Q C, JIANG L Q, et al. Trajectory tracking control of four-wheeled omnidirectional mobile robot considering time consumption in obstacle bypass [J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2023, 51(6): 1-9. | |
22 | DING T, ZHANG Y, MA G, et al. Trajectory tracking of redundantly actuated mobile robot by MPC velocity control under steering strategy constraint [J]. Mechatronics, 2022, 84: 102779. |
23 | AZIZI M R, RASTEGARPANAH A, STOLKIN R. Motion planning and control of an omnidirectional mobile robot in dynamic environments [J]. Robotics, 2021, 10(1): 48. |
24 | LAFMEJANI A S, BERMAN S. Nonlinear MPC for collision-free and deadlock-free navigation of multiple nonholonomic mobile robots [J]. Robotics and Autonomous Systems, 2021, 141: 103774. |
[1] | Ying HU, Zhihuan CHEN. Trajectory tracking control of wheeled mobile robots under side-slip and slip [J]. Journal of Computer Applications, 2024, 44(7): 2294-2300. |
[2] | Ming ZHANG, Le FU, Haifeng WANG. Relay control model for concurrent data flow in edge computing [J]. Journal of Computer Applications, 2024, 44(12): 3876-3883. |
[3] | Xuguang LIU, Changping DU, Yao ZHENG. Trajectory control of quadrotor based on reinforcement learning-iterative learning [J]. Journal of Computer Applications, 2022, 42(12): 3950-3956. |
[4] | LUO Rui, SHI Wuxi, LI Baoquan. Active disturbance rejection control for mobile robot with skidding and slipping [J]. Journal of Computer Applications, 2018, 38(5): 1517-1522. |
[5] | WANG Chunrong, XIA Erdong, WU Long, LIU Jianjun, XIONG Changjiong. Localization for mobile robots based on improved support vector regression algorithm [J]. Journal of Computer Applications, 2016, 36(9): 2545-2549. |
[6] | ZHANG Kun, GAO Xiaoguang. Adaptive tracking control for unmanned aerial vehicle's three dimensional trajectory [J]. Journal of Computer Applications, 2016, 36(9): 2631-2635. |
[7] | CAI Zhuang ZHANG Guoliang TIAN Qi. Trajectory tracking control of manipulator based on FSMC [J]. Journal of Computer Applications, 2014, 34(1): 232-235. |
[8] | REN Dongyan SUN Mingtai. Modeling and simulation for route-transition of mine-hunting and mine-sweeping by helicopter [J]. Journal of Computer Applications, 2013, 33(07): 2087-2090. |
[9] | ZHANG Yang-ming LIU Guo-rong LIU Dong-bo LIU Huan. Trajectory tracking control based on Lyapunov and Terminal sliding mode [J]. Journal of Computer Applications, 2012, 32(11): 3243-3246. |
[10] | HUANG Yu-chuan QU Dao-kui XU Fang REN Xiao-lei. Model predictive control and PID control on servo motor [J]. Journal of Computer Applications, 2012, 32(10): 2944-2947. |
[11] | Guo-liang ZHANG Lei AN Wen-jun TANG. Trajectory tracking control of three-wheeled mobile robot [J]. Journal of Computer Applications, 2011, 31(08): 2293-2296. |
[12] | . Trajectory tracking of mobile robot using iterative learning control in polar coordinates [J]. Journal of Computer Applications, 2010, 30(8): 2017-2020. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||