Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (2): 580-587.DOI: 10.11772/j.issn.1001-9081.2023020187
Special Issue: 多媒体计算与计算机仿真
• Multimedia computing and computer simulation • Previous Articles Next Articles
Hualu QIU1, Suzhen LIN1(), Yanbo WANG1, Feng LIU2, Dawei LI3
Received:
2023-02-27
Revised:
2023-05-14
Accepted:
2023-05-18
Online:
2024-02-22
Published:
2024-02-10
Contact:
Suzhen LIN
About author:
QIU Hualu, born in 2000, M. S. candidate. His research interests include image processing, Magnetic Resonance Imaging (MRI) reconstruction.Supported by:
通讯作者:
蔺素珍
作者简介:
邱华禄(2000—),男,福建三明人,硕士研究生,CCF会员,主要研究方向:图像处理、MRI重建基金资助:
CLC Number:
Hualu QIU, Suzhen LIN, Yanbo WANG, Feng LIU, Dawei LI. Reconstruction algorithm for undersampled magnetic resonance images based on complex convolution dual-domain cascade network[J]. Journal of Computer Applications, 2024, 44(2): 580-587.
邱华禄, 蔺素珍, 王彦博, 刘峰, 李大威. 基于复卷积双域级联网络的欠采样磁共振图像重建算法[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 580-587.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023020187
采样模式 | 算法 | NRMSE | SSIM | PSNR/dB |
---|---|---|---|---|
10% 2DGaussian | ZF | 0.223±0.131 | 0.777±0.068 | 24.867±3.069 |
ReconResNet | 0.135±0.062 | 0.884±0.065 | 28.912±2.885 | |
H-CNN | 0.123±0.054 | 0.873±0.061 | 29.713±2.795 | |
DDNet | 0.110±0.057 | 0.906±0.061 | 30.882±3.589 | |
ComConDuDoCNet | 0.098±0.051 | 0.906±0.060 | 31.930±3.440 | |
20% 2DGaussian | ZF | 0.210±0.121 | 0.791±0.059 | 25.395±2.994 |
ReconResNet | 0.123±0.058 | 0.905±0.050 | 29.757±2.872 | |
H-CNN | 0.108±0.045 | 0.892±0.047 | 30.773±2.832 | |
DDNet | 0.088±0.044 | 0.932±0.043 | 32.834±3.761 | |
ComConDuDoCNet | 0.076±0.041 | 0.939±0.042 | 34.239±3.665 | |
30% 2DGaussian | ZF | 0.179±0.096 | 0.823±0.053 | 26.639±2.921 |
ReconResNet | 0.111±0.055 | 0.924±0.039 | 30.685±2.921 | |
H-CNN | 0.088±0.037 | 0.923±0.034 | 32.598±2.946 | |
DDNet | 0.070±0.036 | 0.954±0.028 | 34.902±3.770 | |
ComConDuDoCNet | 0.057±0.034 | 0.963±0.027 | 36.847±4.034 | |
10% POSSION | ZF | 0.208±0.122 | 0.787±0.068 | 25.437±3.114 |
ReconResNet | 0.139±0.066 | 0.883±0.065 | 28.717±2.811 | |
H-CNN | 0.123±0.057 | 0.875±0.062 | 29.758±2.874 | |
DDNet | 0.110±0.060 | 0.909±0.062 | 30.939±3.667 | |
ComConDuDoCNet | 0.100±0.050 | 0.906±0.062 | 31.786±3.368 | |
20% POSSION | ZF | 0.165±0.089 | 0.834±0.056 | 27.287±3.042 |
ReconResNet | 0.115±0.058 | 0.916±0.048 | 30.462±3.011 | |
H-CNN | 0.096±0.044 | 0.916±0.043 | 31.875±3.103 | |
DDNet | 0.082±0.046 | 0.944±0.042 | 33.558±3.890 | |
ComConDuDoCNet | 0.073±0.042 | 0.945±0.041 | 34.735±3.871 | |
30% POSSION | ZF | 0.127±0.059 | 0.876±0.046 | 29.440±2.888 |
ReconResNet | 0.094±0.048 | 0.945±0.030 | 32.228±3.056 | |
H-CNN | 0.071±0.033 | 0.952±0.025 | 34.631±3.366 | |
DDNet | 0.052±0.030 | 0.974±0.020 | 37.671±4.335 | |
ComConDuDoCNet | 0.044±0.029 | 0.977±0.020 | 39.259±4.364 | |
10% Radial | ZF | 0.341±0.203 | 0.665±0.078 | 21.364±3.015 |
ReconResNet | 0.200±0.077 | 0.813±0.080 | 25.365±2.488 | |
H-CNN | 0.183±0.063 | 0.780±0.082 | 26.017±2.488 | |
DDNet | 0.162±0.076 | 0.837±0.080 | 27.311±3.200 | |
ComConDuDoCNet | 0.151±0.059 | 0.824±0.079 | 27.861±2.764 | |
20% Radial | ZF | 0.207±0.121 | 0.815±0.057 | 25.525±3.174 |
ReconResNet | 0.113±0.056 | 0.923±0.043 | 30.636±2.862 | |
H-CNN | 0.098±0.042 | 0.915±0.042 | 31.659±2.893 | |
DDNet | 0.081±0.043 | 0.945±0.038 | 33.578±3.855 | |
ComConDuDoCNet | 0.071±0.039 | 0.947±0.038 | 34.860±3.748 | |
30% Radial | ZF | 0.151±0.082 | 0.876±0.044 | 28.081±3.156 |
ReconResNet | 0.086±0.047 | 0.953±0.028 | 33.082±3.195 | |
H-CNN | 0.075±0.035 | 0.953±0.026 | 33.994±3.227 | |
DDNet | 0.054±0.031 | 0.973±0.021 | 37.329±4.289 | |
ComConDuDoCNet | 0.048±0.030 | 0.974±0.021 | 38.379±4.064 |
Tab. 1 Quantitative comparison of reconstruction results among different algorithms with different sampling rates and different sampling masks
采样模式 | 算法 | NRMSE | SSIM | PSNR/dB |
---|---|---|---|---|
10% 2DGaussian | ZF | 0.223±0.131 | 0.777±0.068 | 24.867±3.069 |
ReconResNet | 0.135±0.062 | 0.884±0.065 | 28.912±2.885 | |
H-CNN | 0.123±0.054 | 0.873±0.061 | 29.713±2.795 | |
DDNet | 0.110±0.057 | 0.906±0.061 | 30.882±3.589 | |
ComConDuDoCNet | 0.098±0.051 | 0.906±0.060 | 31.930±3.440 | |
20% 2DGaussian | ZF | 0.210±0.121 | 0.791±0.059 | 25.395±2.994 |
ReconResNet | 0.123±0.058 | 0.905±0.050 | 29.757±2.872 | |
H-CNN | 0.108±0.045 | 0.892±0.047 | 30.773±2.832 | |
DDNet | 0.088±0.044 | 0.932±0.043 | 32.834±3.761 | |
ComConDuDoCNet | 0.076±0.041 | 0.939±0.042 | 34.239±3.665 | |
30% 2DGaussian | ZF | 0.179±0.096 | 0.823±0.053 | 26.639±2.921 |
ReconResNet | 0.111±0.055 | 0.924±0.039 | 30.685±2.921 | |
H-CNN | 0.088±0.037 | 0.923±0.034 | 32.598±2.946 | |
DDNet | 0.070±0.036 | 0.954±0.028 | 34.902±3.770 | |
ComConDuDoCNet | 0.057±0.034 | 0.963±0.027 | 36.847±4.034 | |
10% POSSION | ZF | 0.208±0.122 | 0.787±0.068 | 25.437±3.114 |
ReconResNet | 0.139±0.066 | 0.883±0.065 | 28.717±2.811 | |
H-CNN | 0.123±0.057 | 0.875±0.062 | 29.758±2.874 | |
DDNet | 0.110±0.060 | 0.909±0.062 | 30.939±3.667 | |
ComConDuDoCNet | 0.100±0.050 | 0.906±0.062 | 31.786±3.368 | |
20% POSSION | ZF | 0.165±0.089 | 0.834±0.056 | 27.287±3.042 |
ReconResNet | 0.115±0.058 | 0.916±0.048 | 30.462±3.011 | |
H-CNN | 0.096±0.044 | 0.916±0.043 | 31.875±3.103 | |
DDNet | 0.082±0.046 | 0.944±0.042 | 33.558±3.890 | |
ComConDuDoCNet | 0.073±0.042 | 0.945±0.041 | 34.735±3.871 | |
30% POSSION | ZF | 0.127±0.059 | 0.876±0.046 | 29.440±2.888 |
ReconResNet | 0.094±0.048 | 0.945±0.030 | 32.228±3.056 | |
H-CNN | 0.071±0.033 | 0.952±0.025 | 34.631±3.366 | |
DDNet | 0.052±0.030 | 0.974±0.020 | 37.671±4.335 | |
ComConDuDoCNet | 0.044±0.029 | 0.977±0.020 | 39.259±4.364 | |
10% Radial | ZF | 0.341±0.203 | 0.665±0.078 | 21.364±3.015 |
ReconResNet | 0.200±0.077 | 0.813±0.080 | 25.365±2.488 | |
H-CNN | 0.183±0.063 | 0.780±0.082 | 26.017±2.488 | |
DDNet | 0.162±0.076 | 0.837±0.080 | 27.311±3.200 | |
ComConDuDoCNet | 0.151±0.059 | 0.824±0.079 | 27.861±2.764 | |
20% Radial | ZF | 0.207±0.121 | 0.815±0.057 | 25.525±3.174 |
ReconResNet | 0.113±0.056 | 0.923±0.043 | 30.636±2.862 | |
H-CNN | 0.098±0.042 | 0.915±0.042 | 31.659±2.893 | |
DDNet | 0.081±0.043 | 0.945±0.038 | 33.578±3.855 | |
ComConDuDoCNet | 0.071±0.039 | 0.947±0.038 | 34.860±3.748 | |
30% Radial | ZF | 0.151±0.082 | 0.876±0.044 | 28.081±3.156 |
ReconResNet | 0.086±0.047 | 0.953±0.028 | 33.082±3.195 | |
H-CNN | 0.075±0.035 | 0.953±0.026 | 33.994±3.227 | |
DDNet | 0.054±0.031 | 0.973±0.021 | 37.329±4.289 | |
ComConDuDoCNet | 0.048±0.030 | 0.974±0.021 | 38.379±4.064 |
采样模式 | 算法 | NRMSE | SSIM | PSNR/dB |
---|---|---|---|---|
10% 2DGaussian | ZF | 0.372±0.104 | 0.626±0.054 | 20.721±2.326 |
ReconResNet | 0.179±0.042 | 0.908±0.022 | 26.942±2.088 | |
H-CNN | 0.137±0.017 | 0.843±0.039 | 29.140±2.070 | |
DDNet | 0.121±0.027 | 0.907±0.029 | 30.348±2.453 | |
ComConDuDoCNet | 0.090±0.012 | 0.935±0.018 | 32.801±2.228 | |
20% 2DGaussian | ZF | 0.348±0.094 | 0.634±0.052 | 21.279±2.238 |
ReconResNet | 0.183±0.049 | 0.914±0.020 | 26.806±2.007 | |
H-CNN | 0.118±0.013 | 0.844±0.040 | 30.391±2.088 | |
DDNet | 0.081±0.015 | 0.928±0.025 | 33.732±2.416 | |
ComConDuDoCNet | 0.065±0.009 | 0.951±0.013 | 35.604±2.222 | |
30% 2DGaussian | ZF | 0.292±0.071 | 0.669±0.051 | 22.726±2.143 |
ReconResNet | 0.151±0.045 | 0.931±0.016 | 28.527±1.850 | |
H-CNN | 0.091±0.011 | 0.880±0.034 | 32.664±2.184 | |
DDNet | 0.060±0.009 | 0.933±0.021 | 36.363±2.301 | |
ComConDuDoCNet | 0.044±0.006 | 0.970±0.009 | 39.057±2.193 | |
10% POSSION | ZF | 0.342±0.091 | 0.642±0.055 | 21.412±2.377 |
ReconResNet | 0.167±0.041 | 0.917±0.020 | 27.554±2.079 | |
H-CNN | 0.137±0.018 | 0.846±0.040 | 29.155±2.189 | |
DDNet | 0.121±0.026 | 0.924±0.025 | 30.351±2.450 | |
ComConDuDoCNet | 0.092±0.012 | 0.941±0.016 | 32.602±2.199 | |
20% POSSION | ZF | 0.256±0.063 | 0.700±0.055 | 23.889±2.441 |
ReconResNet | 0.160±0.051 | 0.936±0.016 | 28.081±1.955 | |
H-CNN | 0.099±0.014 | 0.890±0.033 | 31.986±2.314 | |
DDNet | 0.077±0.018 | 0.954±0.016 | 34.247±2.268 | |
ComConDuDoCNet | 0.057±0.007 | 0.968±0.009 | 36.804±2.177 | |
30% POSSION | ZF | 0.182±0.039 | 0.749±0.051 | 26.792±2.259 |
ReconResNet | 0.132±0.045 | 0.958±0.010 | 29.845±2.332 | |
H-CNN | 0.062±0.008 | 0.932±0.022 | 36.039±2.181 | |
DDNet | 0.037±0.006 | 0.977±0.009 | 40.665±2.372 | |
ComConDuDoCNet | 0.031±0.004 | 0.982±0.007 | 42.037±2.205 | |
10% Radial | ZF | 0.537±0.168 | 0.475±0.043 | 17.574±1.913 |
ReconResNet | 0.256±0.049 | 0.812±0.042 | 23.757±1.659 | |
H-CNN | 0.219±0.024 | 0.717±0.057 | 25.054±1.966 | |
DDNet | 0.200±0.040 | 0.801±0.052 | 25.962±2.541 | |
ComConDuDoCNet | 0.181±0.023 | 0.800±0.043 | 26.724±2.088 | |
20% Radial | ZF | 0.359±0.093 | 0.644±0.053 | 20.980±2.325 |
ReconResNet | 0.163±0.048 | 0.945±0.011 | 27.864±1.927 | |
H-CNN | 0.105±0.014 | 0.891±0.028 | 31.429±2.188 | |
DDNet | 0.072±0.014 | 0.948±0.019 | 34.776±2.767 | |
ComConDuDoCNet | 0.058±0.008 | 0.967±0.010 | 36.692±2.270 | |
30% Radial | ZF | 0.238±0.061 | 0.735±0.055 | 24.557±2.640 |
ReconResNet | 0.128±0.046 | 0.967±0.008 | 30.151±2.489 | |
H-CNN | 0.077±0.013 | 0.938±0.018 | 34.227±2.362 | |
DDNet | 0.040±0.009 | 0.977±0.010 | 40.052±2.999 | |
ComConDuDoCNet | 0.034±0.005 | 0.984±0.005 | 41.284±2.179 |
Tab. 2 Quantitative comparison of test results among different algorithms on IXI dataset
采样模式 | 算法 | NRMSE | SSIM | PSNR/dB |
---|---|---|---|---|
10% 2DGaussian | ZF | 0.372±0.104 | 0.626±0.054 | 20.721±2.326 |
ReconResNet | 0.179±0.042 | 0.908±0.022 | 26.942±2.088 | |
H-CNN | 0.137±0.017 | 0.843±0.039 | 29.140±2.070 | |
DDNet | 0.121±0.027 | 0.907±0.029 | 30.348±2.453 | |
ComConDuDoCNet | 0.090±0.012 | 0.935±0.018 | 32.801±2.228 | |
20% 2DGaussian | ZF | 0.348±0.094 | 0.634±0.052 | 21.279±2.238 |
ReconResNet | 0.183±0.049 | 0.914±0.020 | 26.806±2.007 | |
H-CNN | 0.118±0.013 | 0.844±0.040 | 30.391±2.088 | |
DDNet | 0.081±0.015 | 0.928±0.025 | 33.732±2.416 | |
ComConDuDoCNet | 0.065±0.009 | 0.951±0.013 | 35.604±2.222 | |
30% 2DGaussian | ZF | 0.292±0.071 | 0.669±0.051 | 22.726±2.143 |
ReconResNet | 0.151±0.045 | 0.931±0.016 | 28.527±1.850 | |
H-CNN | 0.091±0.011 | 0.880±0.034 | 32.664±2.184 | |
DDNet | 0.060±0.009 | 0.933±0.021 | 36.363±2.301 | |
ComConDuDoCNet | 0.044±0.006 | 0.970±0.009 | 39.057±2.193 | |
10% POSSION | ZF | 0.342±0.091 | 0.642±0.055 | 21.412±2.377 |
ReconResNet | 0.167±0.041 | 0.917±0.020 | 27.554±2.079 | |
H-CNN | 0.137±0.018 | 0.846±0.040 | 29.155±2.189 | |
DDNet | 0.121±0.026 | 0.924±0.025 | 30.351±2.450 | |
ComConDuDoCNet | 0.092±0.012 | 0.941±0.016 | 32.602±2.199 | |
20% POSSION | ZF | 0.256±0.063 | 0.700±0.055 | 23.889±2.441 |
ReconResNet | 0.160±0.051 | 0.936±0.016 | 28.081±1.955 | |
H-CNN | 0.099±0.014 | 0.890±0.033 | 31.986±2.314 | |
DDNet | 0.077±0.018 | 0.954±0.016 | 34.247±2.268 | |
ComConDuDoCNet | 0.057±0.007 | 0.968±0.009 | 36.804±2.177 | |
30% POSSION | ZF | 0.182±0.039 | 0.749±0.051 | 26.792±2.259 |
ReconResNet | 0.132±0.045 | 0.958±0.010 | 29.845±2.332 | |
H-CNN | 0.062±0.008 | 0.932±0.022 | 36.039±2.181 | |
DDNet | 0.037±0.006 | 0.977±0.009 | 40.665±2.372 | |
ComConDuDoCNet | 0.031±0.004 | 0.982±0.007 | 42.037±2.205 | |
10% Radial | ZF | 0.537±0.168 | 0.475±0.043 | 17.574±1.913 |
ReconResNet | 0.256±0.049 | 0.812±0.042 | 23.757±1.659 | |
H-CNN | 0.219±0.024 | 0.717±0.057 | 25.054±1.966 | |
DDNet | 0.200±0.040 | 0.801±0.052 | 25.962±2.541 | |
ComConDuDoCNet | 0.181±0.023 | 0.800±0.043 | 26.724±2.088 | |
20% Radial | ZF | 0.359±0.093 | 0.644±0.053 | 20.980±2.325 |
ReconResNet | 0.163±0.048 | 0.945±0.011 | 27.864±1.927 | |
H-CNN | 0.105±0.014 | 0.891±0.028 | 31.429±2.188 | |
DDNet | 0.072±0.014 | 0.948±0.019 | 34.776±2.767 | |
ComConDuDoCNet | 0.058±0.008 | 0.967±0.010 | 36.692±2.270 | |
30% Radial | ZF | 0.238±0.061 | 0.735±0.055 | 24.557±2.640 |
ReconResNet | 0.128±0.046 | 0.967±0.008 | 30.151±2.489 | |
H-CNN | 0.077±0.013 | 0.938±0.018 | 34.227±2.362 | |
DDNet | 0.040±0.009 | 0.977±0.010 | 40.052±2.999 | |
ComConDuDoCNet | 0.034±0.005 | 0.984±0.005 | 41.284±2.179 |
算法 | 网络参数量/MB | 推理时间/ms |
---|---|---|
ReconResNet | 16.71 | 24.59 |
H-CNN | 0.38 | 20.56 |
DDNet | 9.25 | 35.04 |
ComConDuDoCNet | 0.89 | 110.04 |
Tab. 3 Comparison of parameter quantities and inference time among different algorithms
算法 | 网络参数量/MB | 推理时间/ms |
---|---|---|
ReconResNet | 16.71 | 24.59 |
H-CNN | 0.38 | 20.56 |
DDNet | 9.25 | 35.04 |
ComConDuDoCNet | 0.89 | 110.04 |
采样模式 | 卷积 | NRMSE | SSIM | PSNR/dB |
---|---|---|---|---|
2DGaussian | ZF | 0.210±0.121 | 0.791±0.059 | 25.395±2.994 |
复卷积 | 0.076±0.041 | 0.939±0.042 | 34.239±3.665 | |
实值卷积 | 0.089±0.041 | 0.910±0.041 | 32.514±2.969 | |
POSSION | ZF | 0.165±0.089 | 0.834±0.056 | 27.287±3.042 |
复卷积 | 0.073±0.042 | 0.945±0.041 | 34.735±3.871 | |
实值卷积 | 0.081±0.041 | 0.928±0.041 | 33.484±3.208 | |
Radial | ZF | 0.207±0.121 | 0.815±0.057 | 25.525±3.174 |
复卷积 | 0.071±0.039 | 0.947±0.038 | 34.860±3.748 | |
实值卷积 | 0.079±0.038 | 0.933±0.037 | 33.608±3.183 |
Tab. 4 Quantitative results of different convolutions with sampling rate of 20%
采样模式 | 卷积 | NRMSE | SSIM | PSNR/dB |
---|---|---|---|---|
2DGaussian | ZF | 0.210±0.121 | 0.791±0.059 | 25.395±2.994 |
复卷积 | 0.076±0.041 | 0.939±0.042 | 34.239±3.665 | |
实值卷积 | 0.089±0.041 | 0.910±0.041 | 32.514±2.969 | |
POSSION | ZF | 0.165±0.089 | 0.834±0.056 | 27.287±3.042 |
复卷积 | 0.073±0.042 | 0.945±0.041 | 34.735±3.871 | |
实值卷积 | 0.081±0.041 | 0.928±0.041 | 33.484±3.208 | |
Radial | ZF | 0.207±0.121 | 0.815±0.057 | 25.525±3.174 |
复卷积 | 0.071±0.039 | 0.947±0.038 | 34.860±3.748 | |
实值卷积 | 0.079±0.038 | 0.933±0.037 | 33.608±3.183 |
采样模式 | 残差块 | NRMSE | SSIM | PSNR/dB |
---|---|---|---|---|
2DGaussian | ZF | 0.210±0.121 | 0.791±0.059 | 25.395±2.994 |
RFA | 0.076±0.041 | 0.939±0.042 | 34.239±3.665 | |
CR | 0.077±0.042 | 0.937±0.042 | 34.103±3.625 | |
POSSION | ZF | 0.165±0.089 | 0.834±0.056 | 27.287±3.042 |
RFA | 0.073±0.042 | 0.945±0.041 | 34.735±3.871 | |
CR | 0.073±0.042 | 0.944±0.041 | 34.661±3.817 | |
Radial | ZF | 0.207±0.121 | 0.815±0.057 | 25.525±3.174 |
RFA | 0.071±0.039 | 0.947±0.038 | 34.860±3.748 | |
CR | 0.071±0.039 | 0.947±0.038 | 34.789±3.699 |
Tab. 5 Quantitative results of different residual blocks with sampling rate of 20%
采样模式 | 残差块 | NRMSE | SSIM | PSNR/dB |
---|---|---|---|---|
2DGaussian | ZF | 0.210±0.121 | 0.791±0.059 | 25.395±2.994 |
RFA | 0.076±0.041 | 0.939±0.042 | 34.239±3.665 | |
CR | 0.077±0.042 | 0.937±0.042 | 34.103±3.625 | |
POSSION | ZF | 0.165±0.089 | 0.834±0.056 | 27.287±3.042 |
RFA | 0.073±0.042 | 0.945±0.041 | 34.735±3.871 | |
CR | 0.073±0.042 | 0.944±0.041 | 34.661±3.817 | |
Radial | ZF | 0.207±0.121 | 0.815±0.057 | 25.525±3.174 |
RFA | 0.071±0.039 | 0.947±0.038 | 34.860±3.748 | |
CR | 0.071±0.039 | 0.947±0.038 | 34.789±3.699 |
1 | 薛方, 许朝萍, 刘耀飞, 等.基于K空间采样的MRI重建算法研究[J]. 中国医学装备, 2021, 18(8): 1-4. 10.3969/J.ISSN.1672-8270.2021.08.001 |
XUE F, XU C P, LIU Y F, et al. Research on MRI reconstruction algorithm based on K-space sampling[J]. China Medical Equipment, 2021, 18(8): 1-4. 10.3969/J.ISSN.1672-8270.2021.08.001 | |
2 | PRUESSMANN K P, WEIGER M, SCHEIDEGGER M B, et al. SENSE: sensitivity encoding for fast MRI [J]. Magnetic Resonance in Medicine, 1999, 42(5): 952-962. 10.1002/(sici)1522-2594(199911)42:5<952::aid-mrm16>3.0.co;2-s |
3 | GRISWOLD M A, JAKOB P M, HEIDEMANN R M, et al. GeneRalized autocalibrating partially parallel acquisitions (GRAPPA)[J]. Magnetic Resonance in Medicine, 2002, 47(6): 1202-1210. 10.1002/mrm.10171 |
4 | 樊小宇, 蔺素珍, 王彦博, 等.基于残差图卷积神经网络的高倍欠采样核磁共振图像重建算法[J]. 计算机应用, 2023, 43(4): 1261-1268. 10.11772/j.issn.1001-9081.2022020309 |
FAN X Y, LIN S Z, WANG Y B, et al. Reconstruction algorithm for highly undersampled magnetic resonance images based on residual graph convolutional neural network[J]. Journal of Computer Applications, 2023, 43(4): 1261-1268. 10.11772/j.issn.1001-9081.2022020309 | |
5 | HUANG T, LI S, JIA X, et al. Neighbor2Neighbor: self-supervised denoising from single noisy images[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 14776-14785. 10.1109/cvpr46437.2021.01454 |
6 | KONG X, ZHAO H, QIAO Y, et al. ClassSR: a general framework to accelerate super-resolution networks by data characteristic [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 12011-12020. 10.1109/cvpr46437.2021.01184 |
7 | AGHABIGLOU A, EKSIOGLU E M. MR image reconstruction using densely connected residual convolutional networks[J]. Computers in Biology and Medicine, 2021, 139: 105010. 10.1016/j.compbiomed.2021.105010 |
8 | CHATTERJEE S, BREITKOPF M, SARASAEN C, et al. ReconResNet: regularised residual learning for MR image reconstruction of undersampled cartesian and radial data[J]. Computers in Biology and Medicine, 2022, 143: 105321. 10.1016/j.compbiomed.2022.105321 |
9 | ZHAO X, ZHANG Y, QIN Y, et al. Single MR image super-resolution via channel splitting and serial fusion network[J]. Knowledge-Based Systems, 2022, 246: 108669. 10.1016/j.knosys.2022.108669 |
10 | HAN Y, SUNWOO L, YE J C. k-space deep learning for accelerated MRI[J]. IEEE Transactions on Medical Imaging, 2020, 39(2): 377-386. 10.1109/tmi.2019.2927101 |
11 | DU T, ZHANG H, LI Y, et al. Adaptive convolutional neural networks for accelerating magnetic resonance imaging via k-space data interpolation[J]. Medical Image Analysis, 2021, 72: 102098. 10.1016/j.media.2021.102098 |
12 | LEE D, YOO J, TAK S, et al. Deep residual learning for accelerated mri using magnitude and phase networks[J]. IEEE Transactions on Biomedical Engineering, 2018, 65(9): 1985-1995. 10.1109/tbme.2018.2821699 |
13 | EO T, JUN Y, KIM T, et al. KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images[J]. Magnetic Resonance in Medicine, 2018, 80(5): 2188-2201. 10.1002/mrm.27201 |
14 | SOUZA R, LEBEL R M, FRAYNE R. A hybrid, dual domain, cascade of convolutional neural networks for magnetic resonance image reconstruction[C]// Proceedings of the 2nd International Conference on Medical Imaging with Deep Learning. New York: JMLR.org, 2019: 437-446. 10.1016/j.mri.2020.06.002 |
15 | ZHANG Y, LYU J, BI X. A dual-task dual-domain model for blind MRI reconstruction[J]. Computerized Medical Imaging and Graphics, 2021, 89: 101862. 10.1016/j.compmedimag.2021.101862 |
16 | MONTALT-TORDERA J, MUTHURANGU V, HAUPTMANN A, et al. Machine learning in magnetic resonance imaging: image reconstruction[J]. Physica Medica, 2021, 83: 79-87. 10.1016/j.ejmp.2021.02.020 |
17 | EL-REWAIDY H, NEISIUS U, MANCIO J, et al. Deep complex convolutional network for fast reconstruction of 3D late gadolinium enhancement cardiac MRI[J]. NMR in Biomedicine, 2020, 33(7): e4312. 10.1002/nbm.4312 |
18 | WANG S, CHENG H, YING L, et al. DeepcomplexMRI: exploiting deep residual network for fast parallel MR imaging with complex convolution[J]. Magnetic Resonance Imaging, 2020, 68: 136-147. 10.1016/j.mri.2020.02.002 |
19 | LIU J, ZHANG W, TANG Y, et al. Residual feature aggregation network for image super-resolution[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Society Conference on Computer Vision and Pattern Recognition, 2020: 2356-2365. 10.1109/cvpr42600.2020.00243 |
20 | LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2017: 1132-1140. 10.1109/cvprw.2017.151 |
21 | WANG X, YU K, WU S, et al. ESRGAN: enhanced super-resolution generative adversarial networks[C]// Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2019: 63-79. 10.1007/978-3-030-11021-5_5 |
22 | JOHNSON J, ALAHI A, LI F-F. Perceptual losses for real-time style transfer and super-resolution[C]// Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 694-711. 10.1007/978-3-319-46475-6_43 |
23 | 袁针云. 基于并行双域网络的磁共振图像重建算法研究[D].成都:四川大学,2021. |
YUAN Y Z. Research on MRI reconstruction algorithm based on parallel dual-domain network[D]. Chengdu: Sichuan University,2021. |
[1] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[2] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[3] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[4] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[5] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[6] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[7] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[8] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[9] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[10] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[11] | Zhi ZHANG, Xin LI, Naifu YE, Kaixi HU. DKP: defending against model stealing attacks based on dark knowledge protection [J]. Journal of Computer Applications, 2024, 44(7): 2080-2086. |
[12] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
[13] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[14] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
[15] | Yajuan ZHAO, Fanjun MENG, Xingjian XU. Review of online education learner knowledge tracing [J]. Journal of Computer Applications, 2024, 44(6): 1683-1698. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||