Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (1): 186-195.DOI: 10.11772/j.issn.1001-9081.2023121760
• Advanced computing • Previous Articles Next Articles
Quan TANG1,2,3, Peng WANG4(), Gang XIN4
Received:
2023-12-19
Revised:
2024-03-20
Accepted:
2024-04-10
Online:
2024-05-07
Published:
2025-01-10
Contact:
Peng WANG
About author:
TANG Quan, born in 1981, Ph. D. candidate. Her research interests include quantum inspired algorithm, swarm intelligence algorithm.Supported by:
通讯作者:
王鹏
作者简介:
唐泉(1981—),女,四川营山人,博士研究生,主要研究方向:量子启发式算法、群智能算法;基金资助:
CLC Number:
Quan TANG, Peng WANG, Gang XIN. Optimization algorithm entropy based on quantum dynamics[J]. Journal of Computer Applications, 2025, 45(1): 186-195.
唐泉, 王鹏, 辛罡. 基于量子动力学的优化算法熵[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 186-195.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023121760
函数 | 名称 | 表达式 | 定义域 |
---|---|---|---|
f1 | Girewank | [-100,100] | |
f2 | Ackley | [-32.7,32.7] | |
f3 | Levy | [-10,10] | |
f4 | Rastrigin | [-5.12,5.12] | |
f5 | Sphere | [-5.12,5.12] | |
f6 | Sum squares | [-10,10] | |
f7 | Zakharov | [ |
Tab. 1 Test functions
函数 | 名称 | 表达式 | 定义域 |
---|---|---|---|
f1 | Girewank | [-100,100] | |
f2 | Ackley | [-32.7,32.7] | |
f3 | Levy | [-10,10] | |
f4 | Rastrigin | [-5.12,5.12] | |
f5 | Sphere | [-5.12,5.12] | |
f6 | Sum squares | [-10,10] | |
f7 | Zakharov | [ |
函数 | 函数类型 | 物理量 | 统计指标 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
多模 | 熵 | Mean | 6.928 | 6.922 | 6.860 | 6.276 | 5.576 | 5.023 | 3.890 | |
Std | 0.004 | 0.001 | 0.009 | 0.133 | 0.248 | 0.116 | 0.000 | |||
Max | 6.931 | 6.923 | 6.866 | 6.432 | 5.915 | 5.170 | 3.890 | |||
Min | 6.922 | 6.921 | 6.853 | 6.097 | 5.127 | 4.745 | 3.890 | |||
能量 | Mean | 18.126 | 17.639 | 16.120 | 12.806 | 10.384 | 8.208 | 3.655 | ||
Std | 0.293 | 0.026 | 0.132 | 0.481 | 0.553 | 0.230 | 0.000 | |||
Max | 18.276 | 17.659 | 16.210 | 13.432 | 11.168 | 8.679 | 3.655 | |||
Min | 17.663 | 17.618 | 16.030 | 12.191 | 9.408 | 7.782 | 3.655 | |||
多模 | 熵 | Mean | 8.761 | 8.754 | 8.671 | 8.280 | 7.563 | 6.925 | 6.244 | |
Std | 0.004 | 0.001 | 0.007 | 0.045 | 0.098 | 0.097 | 0.109 | |||
Max | 8.763 | 8.755 | 8.675 | 8.324 | 7.696 | 7.057 | 6.372 | |||
Min | 8.754 | 8.753 | 8.666 | 8.231 | 7.432 | 6.792 | 6.065 | |||
能量 | Mean | 18.165 | 17.938 | 16.979 | 14.668 | 11.170 | 7.851 | 5.199 | ||
Std | 0.128 | 0.011 | 0.067 | 0.214 | 0.361 | 0.387 | 0.271 | |||
Max | 18.229 | 17.947 | 17.023 | 14.906 | 11.677 | 8.378 | 5.554 | |||
Min | 17.955 | 17.929 | 16.934 | 14.434 | 10.704 | 7.315 | 4.747 | |||
多模 | 熵 | Mean | 7.598 | 7.590 | 7.507 | 7.170 | 6.496 | 5.623 | 5.050 | |
Std | 0.005 | 0.001 | 0.008 | 0.045 | 0.104 | 0.067 | 0.078 | |||
Max | 7.600 | 7.592 | 7.512 | 7.210 | 6.638 | 5.688 | 5.110 | |||
Min | 7.590 | 7.589 | 7.502 | 7.108 | 6.270 | 5.576 | 4.988 | |||
能量 | Mean | 3.550 | 3.318 | 2.564 | 1.568 | 0.804 | 0.305 | 0.118 | ||
Std | 0.130 | 0.028 | 0.050 | 0.088 | 0.085 | 0.017 | 0.018 | |||
Max | 3.623 | 3.343 | 2.600 | 1.663 | 0.933 | 0.328 | 0.133 | |||
Min | 3.331 | 3.293 | 2.530 | 1.449 | 0.633 | 0.294 | 0.102 | |||
单模 | 熵 | Mean | 6.928 | 6.921 | 6.833 | 6.422 | 5.787 | 5.114 | 4.415 | |
Std | 0.005 | 0.001 | 0.008 | 0.041 | 0.089 | 0.125 | 0.095 | |||
Max | 6.931 | 6.922 | 6.839 | 6.451 | 5.887 | 5.262 | 4.530 | |||
Min | 6.921 | 6.920 | 6.827 | 6.386 | 5.670 | 4.905 | 4.263 | |||
能量 | Mean | 8.312 | 7.744 | 5.682 | 2.576 | 0.916 | 0.268 | 0.061 | ||
Std | 0.318 | 0.023 | 0.131 | 0.210 | 0.148 | 0.064 | 0.012 | |||
Max | 8.470 | 7.765 | 5.781 | 2.748 | 1.099 | 0.356 | 0.077 | |||
Min | 7.787 | 7.722 | 5.588 | 2.386 | 0.712 | 0.168 | 0.042 | |||
单模 | 熵 | Mean | 7.598 | 7.591 | 7.509 | 7.128 | 6.530 | 5.754 | 5.049 | |
Std | 0.004 | 0.001 | 0.008 | 0.038 | 0.075 | 0.105 | 0.096 | |||
Max | 7.600 | 7.592 | 7.515 | 7.157 | 6.619 | 5.887 | 5.175 | |||
Min | 7.590 | 7.589 | 7.502 | 7.093 | 6.416 | 5.587 | 4.906 | |||
能量 | Mean | 31.759 | 29.563 | 21.928 | 10.136 | 3.547 | 0.968 | 0.230 | ||
Std | 1.164 | 0.093 | 0.526 | 0.856 | 0.621 | 0.216 | 0.045 | |||
Max | 32.314 | 29.652 | 22.353 | 10.833 | 4.333 | 1.266 | 0.285 | |||
Min | 29.717 | 29.478 | 21.455 | 9.333 | 2.667 | 0.636 | 0.162 | |||
单模 | 熵 | Mean | 7.309 | 7.295 | 7.179 | 6.822 | 6.137 | 5.361 | 4.657 | |
Std | 0.006 | 0.003 | 0.012 | 0.029 | 0.118 | 0.119 | 0.127 | |||
Max | 7.312 | 7.298 | 7.187 | 6.850 | 6.292 | 5.516 | 4.822 | |||
Min | 7.299 | 7.291 | 7.168 | 6.791 | 5.976 | 5.211 | 4.479 | |||
能量 | Mean | 107.060 | 87.859 | 45.883 | 13.991 | 3.197 | 0.614 | 0.146 | ||
Std | 9.016 | 2.787 | 2.725 | 1.483 | 0.710 | 0.117 | 0.029 | |||
Max | 113.224 | 90.532 | 47.785 | 15.502 | 4.226 | 0.773 | 0.182 | |||
Min | 92.088 | 85.323 | 43.586 | 12.346 | 2.205 | 0.464 | 0.102 |
Tab. 2 Experimental results of algorithm entropy and energy under different kinetic energy of free particles
函数 | 函数类型 | 物理量 | 统计指标 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
多模 | 熵 | Mean | 6.928 | 6.922 | 6.860 | 6.276 | 5.576 | 5.023 | 3.890 | |
Std | 0.004 | 0.001 | 0.009 | 0.133 | 0.248 | 0.116 | 0.000 | |||
Max | 6.931 | 6.923 | 6.866 | 6.432 | 5.915 | 5.170 | 3.890 | |||
Min | 6.922 | 6.921 | 6.853 | 6.097 | 5.127 | 4.745 | 3.890 | |||
能量 | Mean | 18.126 | 17.639 | 16.120 | 12.806 | 10.384 | 8.208 | 3.655 | ||
Std | 0.293 | 0.026 | 0.132 | 0.481 | 0.553 | 0.230 | 0.000 | |||
Max | 18.276 | 17.659 | 16.210 | 13.432 | 11.168 | 8.679 | 3.655 | |||
Min | 17.663 | 17.618 | 16.030 | 12.191 | 9.408 | 7.782 | 3.655 | |||
多模 | 熵 | Mean | 8.761 | 8.754 | 8.671 | 8.280 | 7.563 | 6.925 | 6.244 | |
Std | 0.004 | 0.001 | 0.007 | 0.045 | 0.098 | 0.097 | 0.109 | |||
Max | 8.763 | 8.755 | 8.675 | 8.324 | 7.696 | 7.057 | 6.372 | |||
Min | 8.754 | 8.753 | 8.666 | 8.231 | 7.432 | 6.792 | 6.065 | |||
能量 | Mean | 18.165 | 17.938 | 16.979 | 14.668 | 11.170 | 7.851 | 5.199 | ||
Std | 0.128 | 0.011 | 0.067 | 0.214 | 0.361 | 0.387 | 0.271 | |||
Max | 18.229 | 17.947 | 17.023 | 14.906 | 11.677 | 8.378 | 5.554 | |||
Min | 17.955 | 17.929 | 16.934 | 14.434 | 10.704 | 7.315 | 4.747 | |||
多模 | 熵 | Mean | 7.598 | 7.590 | 7.507 | 7.170 | 6.496 | 5.623 | 5.050 | |
Std | 0.005 | 0.001 | 0.008 | 0.045 | 0.104 | 0.067 | 0.078 | |||
Max | 7.600 | 7.592 | 7.512 | 7.210 | 6.638 | 5.688 | 5.110 | |||
Min | 7.590 | 7.589 | 7.502 | 7.108 | 6.270 | 5.576 | 4.988 | |||
能量 | Mean | 3.550 | 3.318 | 2.564 | 1.568 | 0.804 | 0.305 | 0.118 | ||
Std | 0.130 | 0.028 | 0.050 | 0.088 | 0.085 | 0.017 | 0.018 | |||
Max | 3.623 | 3.343 | 2.600 | 1.663 | 0.933 | 0.328 | 0.133 | |||
Min | 3.331 | 3.293 | 2.530 | 1.449 | 0.633 | 0.294 | 0.102 | |||
单模 | 熵 | Mean | 6.928 | 6.921 | 6.833 | 6.422 | 5.787 | 5.114 | 4.415 | |
Std | 0.005 | 0.001 | 0.008 | 0.041 | 0.089 | 0.125 | 0.095 | |||
Max | 6.931 | 6.922 | 6.839 | 6.451 | 5.887 | 5.262 | 4.530 | |||
Min | 6.921 | 6.920 | 6.827 | 6.386 | 5.670 | 4.905 | 4.263 | |||
能量 | Mean | 8.312 | 7.744 | 5.682 | 2.576 | 0.916 | 0.268 | 0.061 | ||
Std | 0.318 | 0.023 | 0.131 | 0.210 | 0.148 | 0.064 | 0.012 | |||
Max | 8.470 | 7.765 | 5.781 | 2.748 | 1.099 | 0.356 | 0.077 | |||
Min | 7.787 | 7.722 | 5.588 | 2.386 | 0.712 | 0.168 | 0.042 | |||
单模 | 熵 | Mean | 7.598 | 7.591 | 7.509 | 7.128 | 6.530 | 5.754 | 5.049 | |
Std | 0.004 | 0.001 | 0.008 | 0.038 | 0.075 | 0.105 | 0.096 | |||
Max | 7.600 | 7.592 | 7.515 | 7.157 | 6.619 | 5.887 | 5.175 | |||
Min | 7.590 | 7.589 | 7.502 | 7.093 | 6.416 | 5.587 | 4.906 | |||
能量 | Mean | 31.759 | 29.563 | 21.928 | 10.136 | 3.547 | 0.968 | 0.230 | ||
Std | 1.164 | 0.093 | 0.526 | 0.856 | 0.621 | 0.216 | 0.045 | |||
Max | 32.314 | 29.652 | 22.353 | 10.833 | 4.333 | 1.266 | 0.285 | |||
Min | 29.717 | 29.478 | 21.455 | 9.333 | 2.667 | 0.636 | 0.162 | |||
单模 | 熵 | Mean | 7.309 | 7.295 | 7.179 | 6.822 | 6.137 | 5.361 | 4.657 | |
Std | 0.006 | 0.003 | 0.012 | 0.029 | 0.118 | 0.119 | 0.127 | |||
Max | 7.312 | 7.298 | 7.187 | 6.850 | 6.292 | 5.516 | 4.822 | |||
Min | 7.299 | 7.291 | 7.168 | 6.791 | 5.976 | 5.211 | 4.479 | |||
能量 | Mean | 107.060 | 87.859 | 45.883 | 13.991 | 3.197 | 0.614 | 0.146 | ||
Std | 9.016 | 2.787 | 2.725 | 1.483 | 0.710 | 0.117 | 0.029 | |||
Max | 113.224 | 90.532 | 47.785 | 15.502 | 4.226 | 0.773 | 0.182 | |||
Min | 92.088 | 85.323 | 43.586 | 12.346 | 2.205 | 0.464 | 0.102 |
物理量 | 统计指标 | ||||||||
---|---|---|---|---|---|---|---|---|---|
2 | 熵 | Mean | 6.929 | 6.922 | 6.846 | 6.436 | 5.674 | 4.925 | 3.854 |
Std | 0.004 | 0.001 | 0.009 | 0.056 | 0.119 | 0.152 | 0.093 | ||
Max | 6.931 | 6.923 | 6.852 | 6.492 | 5.820 | 5.132 | 3.921 | ||
Min | 6.922 | 6.921 | 6.840 | 6.376 | 5.455 | 4.604 | 3.745 | ||
能量 | Mean | 18.294 | 17.727 | 15.811 | 12.680 | 10.413 | 9.159 | 8.543 | |
Std | 0.296 | 0.023 | 0.138 | 0.316 | 0.275 | 0.309 | 0.229 | ||
Max | 18.432 | 17.744 | 15.913 | 13.027 | 10.764 | 9.648 | 9.237 | ||
Min | 17.765 | 17.708 | 15.711 | 12.359 | 9.930 | 8.535 | 8.471 | ||
6 | 熵 | Mean | 6.929 | 6.922 | 6.851 | 6.532 | 5.774 | 5.162 | 4.251 |
Std | 0.004 | 0.001 | 0.007 | 0.069 | 0.181 | 0.122 | 0.001 | ||
Max | 6.931 | 6.923 | 6.857 | 6.610 | 6.023 | 5.291 | 4.251 | ||
Min | 6.922 | 6.920 | 6.846 | 6.437 | 5.476 | 4.848 | 4.250 | ||
能量 | Mean | 18.215 | 17.697 | 15.993 | 13.346 | 10.660 | 9.183 | 6.433 | |
Std | 0.287 | 0.027 | 0.123 | 0.414 | 0.417 | 0.182 | 0.003 | ||
Max | 18.355 | 17.719 | 16.101 | 13.897 | 11.260 | 9.447 | 6.435 | ||
Min | 17.731 | 17.675 | 15.892 | 12.780 | 9.982 | 8.774 | 6.433 | ||
10 | 熵 | Mean | 6.928 | 6.921 | 6.855 | 6.608 | 5.968 | 5.207 | 4.255 |
Std | 0.004 | 0.002 | 0.008 | 0.058 | 0.111 | 0.105 | 0.000 | ||
Max | 6.931 | 6.922 | 6.862 | 6.674 | 6.116 | 5.310 | 4.255 | ||
Min | 6.921 | 6.919 | 6.848 | 6.516 | 5.757 | 4.965 | 4.255 | ||
能量 | Mean | 18.155 | 17.645 | 16.123 | 13.829 | 11.146 | 8.677 | 4.024 | |
Std | 0.261 | 0.031 | 0.127 | 0.487 | 0.307 | 0.129 | 0.007 | ||
Max | 18.277 | 17.671 | 16.232 | 14.472 | 11.601 | 8.896 | 4.028 | ||
Min | 17.687 | 17.622 | 16.018 | 13.052 | 10.626 | 8.475 | 4.023 |
Tab. 3 Experimental results of algorithm entropy and energy under different disturbances (Rastrigin function)
物理量 | 统计指标 | ||||||||
---|---|---|---|---|---|---|---|---|---|
2 | 熵 | Mean | 6.929 | 6.922 | 6.846 | 6.436 | 5.674 | 4.925 | 3.854 |
Std | 0.004 | 0.001 | 0.009 | 0.056 | 0.119 | 0.152 | 0.093 | ||
Max | 6.931 | 6.923 | 6.852 | 6.492 | 5.820 | 5.132 | 3.921 | ||
Min | 6.922 | 6.921 | 6.840 | 6.376 | 5.455 | 4.604 | 3.745 | ||
能量 | Mean | 18.294 | 17.727 | 15.811 | 12.680 | 10.413 | 9.159 | 8.543 | |
Std | 0.296 | 0.023 | 0.138 | 0.316 | 0.275 | 0.309 | 0.229 | ||
Max | 18.432 | 17.744 | 15.913 | 13.027 | 10.764 | 9.648 | 9.237 | ||
Min | 17.765 | 17.708 | 15.711 | 12.359 | 9.930 | 8.535 | 8.471 | ||
6 | 熵 | Mean | 6.929 | 6.922 | 6.851 | 6.532 | 5.774 | 5.162 | 4.251 |
Std | 0.004 | 0.001 | 0.007 | 0.069 | 0.181 | 0.122 | 0.001 | ||
Max | 6.931 | 6.923 | 6.857 | 6.610 | 6.023 | 5.291 | 4.251 | ||
Min | 6.922 | 6.920 | 6.846 | 6.437 | 5.476 | 4.848 | 4.250 | ||
能量 | Mean | 18.215 | 17.697 | 15.993 | 13.346 | 10.660 | 9.183 | 6.433 | |
Std | 0.287 | 0.027 | 0.123 | 0.414 | 0.417 | 0.182 | 0.003 | ||
Max | 18.355 | 17.719 | 16.101 | 13.897 | 11.260 | 9.447 | 6.435 | ||
Min | 17.731 | 17.675 | 15.892 | 12.780 | 9.982 | 8.774 | 6.433 | ||
10 | 熵 | Mean | 6.928 | 6.921 | 6.855 | 6.608 | 5.968 | 5.207 | 4.255 |
Std | 0.004 | 0.002 | 0.008 | 0.058 | 0.111 | 0.105 | 0.000 | ||
Max | 6.931 | 6.922 | 6.862 | 6.674 | 6.116 | 5.310 | 4.255 | ||
Min | 6.921 | 6.919 | 6.848 | 6.516 | 5.757 | 4.965 | 4.255 | ||
能量 | Mean | 18.155 | 17.645 | 16.123 | 13.829 | 11.146 | 8.677 | 4.024 | |
Std | 0.261 | 0.031 | 0.127 | 0.487 | 0.307 | 0.129 | 0.007 | ||
Max | 18.277 | 17.671 | 16.232 | 14.472 | 11.601 | 8.896 | 4.028 | ||
Min | 17.687 | 17.622 | 16.018 | 13.052 | 10.626 | 8.475 | 4.023 |
1 | SHANNON C E. A mathematical theory of communication [J]. Bell System Technical Journal, 1948, 27(3): 379-423. |
2 | VON NEUMANN J. Mathematische grundlagen der quantenmechanik (English translation) [M]. Princeton: Princeton University Press, 1955: 230-254. |
3 | KOLMOGROV A N. Three approaches to the quantitative definition of information [J]. International Journal of Computer Mathematics, 1968, 2(1/2/3/4): 157-168. |
4 | PINCUS S. Approximate Entropy (ApEn) as a complexity measure [J]. Chaos, 1995, 5(1): 110-117. |
5 | RICHMAN J S, MOORMAN J R. Physiological time-series analysis using approximate entropy and sample entropy [J]. American Journal of Physiology-Heart and Circulatory Physiology, 2000, 278(6): H2039-H2049. |
6 | CHEN W, WANG Z, XIE H, et al. Characterization of surface EMG signal based on fuzzy entropy [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(2): 266-272. |
7 | BANDT C, POMPE B. Permutation entropy: a natural complexity measure for time series [J]. Physical Review Letters, 2002, 88(17): No.174102. |
8 | ROSTAGHI M, AZAMI H. Dispersion entropy: a measure for time-series analysis [J]. IEEE Signal Processing Letters, 2016, 23(5): 610-614. |
9 | SERGI A, ZLOSHCHASTIEV K G. Quantum entropy of systems described by non-Hermitian Hamiltonians [J]. Journal of Statistical Mechanics: Theory and Experiment, 2016, 2016(3): No.033102. |
10 | LI D, ZHENG C. Non-Hermitian generalization of Rényi entropy [J]. Entropy, 2022, 24(11): No.1563. |
11 | ACHARYA U R, FUJITA H, SUDARSHAN V K, et al. Application of entropies for automated diagnosis of epilepsy using EEG signals: a review [J]. Knowledge-Based Systems, 2015, 88: 85-96. |
12 | PAPPALETTERA C, MIRAGLIA F, COTELLI M, et al. Analysis of complexity in the EEG activity of Parkinson’s disease patients by means of approximate entropy [J]. GeroScience, 2022, 44(3): 1599-1607. |
13 | YIN Y, SHANG P. Detection of multiscale properties of financial market dynamics based on an entropic segmentation method [J]. Nonlinear Dynamics, 2016, 83(3): 1743-1756. |
14 | PATRA S, HIREMATH G S. An entropy approach to measure the dynamic stock market efficiency [J]. Journal of Quantitative Economics, 2022, 20(2): 337-377. |
15 | ZHANG N, LIN A, MA H, et al. Weighted multivariate composite multiscale sample entropy analysis for the complexity of nonlinear times series [J]. Physica A: Statistical Mechanics and its Applications, 2018, 508: 595-607. |
16 | KIM J, YANG I. Maximum entropy optimal control of continuous-time dynamical systems [J]. IEEE Transaction on Automatic Control, 2023, 68(4): 2018-2033. |
17 | BURKE E K, GUSTAFSON S, KENDALL G. Diversity in genetic programming: an analysis of measures and correlation with fitness [J]. IEEE Transactions on Evolutionary Computation, 2004, 8(1): 47-62. |
18 | LEE J Y, KIM M S, LEE J J. Compact genetic algorithms using belief vectors [J]. Applied Soft Computing, 2011, 11(4): 3385-3401. |
19 | BASU S, BASU M. Social group entropy optimization for day-ahead heat and power scheduling of an isolated microgrid [J]. Engineering Optimization, 2022, 54(7): 1193-1216. |
20 | CHEN Q, XUE B, ZHANG M. Preserving population diversity based on transformed semantics in genetic programming for symbolic regression [J]. IEEE Transactions on Evolutionary Computation, 2021, 25(3): 433-447. |
21 | LING C, LU Z, CHENG K, et al. An efficient method for estimating global reliability sensitivity indices [J]. Probabilistic Engineering Mechanics, 2019, 56: 35-49. |
22 | BAER K, ERICSON L, KRUS P. Robustness and performance evaluations for simulation-based control and component parameter optimization for a series hydraulic hybrid vehicle [J]. Engineering Optimization, 2020, 52(3): 446-464. |
23 | 陈宗海,李明.基于量子扩散理论的量子动力学过程仿真[J].中国科学技术大学学报, 2008, 38(7): 828-834. |
CHEN Z H, LI M. Quantum state diffusion based simulation of quantum dynamics [J]. Journal of University of Science and Technology of China, 2008, 38(7): 828-834. | |
24 | 黄光球,李涛,陆秋琴.种群动力学优化算法[J].计算机科学, 2013, 40(11): 280-286. |
HUANG G Q, LI T, LU Q Q. Population dynamics-based optimization [J]. Computer Science, 2013, 40(11): 280-286. | |
25 | ZHOU X, CAO J, WANG X. Predefined-time synchronization of coupled neural networks with switching parameters and disturbed by Brownian motion [J]. Neural Networks, 2023, 160: 97-107. |
26 | HE P, REN Y, ZHANG D F. A stochastic neutral cellular neural network model driven by G-Brownian motion [C]// Proceedings of the 2019 International Conference on Energy, Power, Environment and Computer Application. Lancaster, PA: DEStechd Publications, Inc., 2019: 231-236. |
27 | KASINATHAN R, KASINATHAN R, SANDRASEKARAN V. Solvability and optimal controls of neutral stochastic integro-differential equations driven by fractional Brownian motion [J]. Journal of Control and Decision, 2023: No.2197911. |
28 | SATHIYARAJ T, WANG J, BALASUBRAMANIAM P. Controllability and optimal control for a class of time-delayed fractional stochastic integro-differential systems [J]. Applied Mathematics and Optimization, 2021, 84: 2527-2554. |
29 | WANG Y, ZOBIRI F, DECONINCK G. Prosumer centric flexibility market with geometric Brownian motion pricing method [C]// Proceedings of the 2021 IEEE PES Innovative Smart Grid Technology Europe. Piscataway: IEEE, 2021: 1-6. |
30 | BENELLI R, WEISS M. From sub- to superdiffusion: fractional Brownian motion of membraneless organelles in early C. elegans embryos [J]. New Journal of Physics, 2021, 23(6): No.063072. |
31 | NELSON E. Derivation of the Schrödinger equation from Newtonian mechanics [J]. Physical Review, 1966, 150(4): 1079-1085. |
32 | FINNILA A B, GOMEZ M A, SEBENIK C, et al. Quantum annealing: a new method for minimizing multidimensional functions [J]. Chemical Physics Letters, 1994, 219(5/6): 343-348. |
33 | LEE Y H, BERNE B J. Global optimization: quantum thermal annealing with path integral Monte Carlo [J]. The Journal of Physical Chemistry A, 2000, 104(1): 86-95. |
34 | KOSZTIN I, FABER B, SCHULTEN K. Introduction to the diffusion Monte Carlo method [J]. American Journal of Physics, 1996, 64(5): 633-644. |
35 | RISKEN H. The Fokker-Planck equation: methods of solution and applications, SSSYN 18 [M]. 2nd ed. Berlin: Springer, 1996: 32-58. |
36 | 沈惠川.量子力学随机诠释的数学结构和物理学特征[J].自然杂志, 1995, 17(3): 152-156. |
SHEN H C. The mathematical structure and physical characteristics of random interpretation in quantum mechanics [J]. Chinese Journal of Nature, 1995, 17(3): 152-156. | |
37 | DE LA PEÑA-AUERBACH L. New formulation of stochastic theory and quantum mechanics [J]. Journal of Mathematical Physics, 1969, 10(9): 1620-1630. |
38 | GRIFFITHS D J, SCHROETER D F. Introduction to quantum mechanics [M]. 3rd ed. Cambridge: Cambridge University Press, 2018: 1-26. |
39 | BORN M. Statistical interpretation of quantum mechanics [J]. Science, 1955, 122(3172): 675-679. |
40 | NIELSEN M A, CHUANG I L. Quantum computation and quantum information [M]. Cambridge: Cambridge University Press, 2000: 500-527. |
41 | WICK G C. Properties of Bethe-Salpeter wave functions [J]. Physical Review, 1954, 96(4): 1124-1134. |
42 | O’BRIEN D M. The Wick rotation [J]. Australian Journal of Physics, 1975, 28(1): 7-14. |
[1] | Ying HUANG, Changsheng LI, Hui PENG, Su LIU. Dual-branch network guided by local entropy for dynamic scene high dynamic range imaging [J]. Journal of Computer Applications, 2025, 45(1): 204-213. |
[2] | Lichao PANG, Xiaofeng WANG, Zhixin XIE, Yi YANG, Xingyu ZHAO, Lan YANG. Solution cluster structure analysis of random regular 3-satisfiability problems [J]. Journal of Computer Applications, 2024, 44(7): 2137-2143. |
[3] | Dongju YANG, Chengfu HU. Keyword extraction method for scientific text based on improved TextRank [J]. Journal of Computer Applications, 2024, 44(6): 1720-1726. |
[4] | Kaiwen ZHAO, Peng WANG, Xiangrong TONG. Two-stage search-based constrained evolutionary multitasking optimization algorithm [J]. Journal of Computer Applications, 2024, 44(5): 1415-1422. |
[5] | Jiawei ZHAO, Xuefeng CHEN, Liang FENG, Yaqing HOU, Zexuan ZHU, Yew‑Soon Ong. Review of evolutionary multitasking from the perspective of optimization scenarios [J]. Journal of Computer Applications, 2024, 44(5): 1325-1337. |
[6] | Xuanfeng LI, Shengcai LIU, Ke TANG. Novel genetic algorithm for solving chance-constrained multiple-choice Knapsack problems [J]. Journal of Computer Applications, 2024, 44(5): 1378-1385. |
[7] | Yuanchao LI, Chongben TAO, Chen WANG. Gait control method based on maximum entropy deep reinforcement learning for biped robot [J]. Journal of Computer Applications, 2024, 44(2): 445-451. |
[8] | Zhijie LI, Xuhong LIAO, Yuanxiang LI, Qinglan LI. Disease sample classification algorithm by Bayesian network with gene association analysis [J]. Journal of Computer Applications, 2024, 44(11): 3449-3458. |
[9] | Yaobin ZOU, Bin ZHANG. Automatic thresholding method guided by maximizing four-directional weighted Shannon entropy [J]. Journal of Computer Applications, 2024, 44(11): 3565-3573. |
[10] | Yongjian MA, Xuhua SHI, Peiyao WANG. Constrained multi-objective evolutionary algorithm based on two-stage search and dynamic resource allocation [J]. Journal of Computer Applications, 2024, 44(1): 269-277. |
[11] | Qiuyu ZHANG, Yongwang WEN. Triplet deep hashing method for speech retrieval [J]. Journal of Computer Applications, 2023, 43(9): 2910-2918. |
[12] | Hanchen LI, Shunxiang ZHANG, Guangli ZHU, Tengke WANG. Chinese homophonic neologism discovery method based on Pinyin similarity [J]. Journal of Computer Applications, 2023, 43(9): 2715-2720. |
[13] | Peng LI, Shilin WANG, Guangwu CHEN, Guanghui YAN. Key node mining in complex network based on improved local structural entropy [J]. Journal of Computer Applications, 2023, 43(4): 1109-1114. |
[14] | Mengyi LI, Xia FANG, Hongbo ZHENG, Xujia QIN. Oriented line integral convolution algorithm for flow field based on information entropy [J]. Journal of Computer Applications, 2023, 43(4): 1233-1239. |
[15] | Zhongrui QIU, Hong MIAO, Chengbi ZENG. Improved slime mould algorithm with multi-strategy fusion [J]. Journal of Computer Applications, 2023, 43(3): 812-819. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||