Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (1): 204-213.DOI: 10.11772/j.issn.1001-9081.2023121726
• Multimedia computing and computer simulation • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                    Ying HUANG1,2( ), Changsheng LI1, Hui PENG2, Su LIU2
), Changsheng LI1, Hui PENG2, Su LIU2
												  
						
						
						
					
				
Received:2023-12-15
															
							
																	Revised:2024-02-27
															
							
																	Accepted:2024-03-04
															
							
							
																	Online:2024-04-10
															
							
																	Published:2025-01-10
															
							
						Contact:
								Ying HUANG   
													About author:LI Changsheng, born in 1999, M. S. candidate. His research interests include multi-exposure image fusion.通讯作者:
					黄颖
							作者简介:李昌盛(1999—),男,河南信阳人,硕士研究生,主要研究方向:多曝光图像融合;CLC Number:
Ying HUANG, Changsheng LI, Hui PENG, Su LIU. Dual-branch network guided by local entropy for dynamic scene high dynamic range imaging[J]. Journal of Computer Applications, 2025, 45(1): 204-213.
黄颖, 李昌盛, 彭慧, 刘苏. 用于动态场景高动态范围成像的局部熵引导的双分支网络[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 204-213.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023121726
| 网络 | 评价指标 | 计算时间/s | 参数量/106 | |||
|---|---|---|---|---|---|---|
| PSNR-μ/dB | PSNR-l/dB | SSIM-μ | SSIM-l | |||
| 文献[ | 40.80 | 38.11 | 0.980 8 | 0.972 1 | 73.96 | 0.00 | 
| 文献[ | 35.79 | 30.76 | 0.971 7 | 0.950 3 | — | — | 
| 文献[ | 42.67 | 41.23 | 0.988 8 | 0.984 6 | 32.79 | 0.38 | 
| 文献[ | 41.65 | 40.88 | 0.986 0 | 0.985 8 | 0.18 | 20.40 | 
| 文献[ | 42.41 | 41.43 | 0.987 7 | 0.985 7 | 0.16 | 38.10 | 
| 文献[ | 43.63 | 41.14 | 0.990 0 | 0.970 2 | 0.53 | 1.52 | 
| 文献[ | 43.92 | 41.57 | 0.990 5 | 0.986 5 | 0.26 | 2.56 | 
| 文献[ | 44.06 | 41.57 | 0.990 7 | 0.986 7 | — | — | 
| 文献[ | 43.05 | 41.33 | 0.989 6 | 0.986 6 | — | — | 
| 文献[ | 43.96 | 41.67 | 0.60 | 7.46 | ||
| 文献[ | 44.09 | 41.70 | 0.990 9 | 0.987 2 | — | — | 
| 文献[ | 0.991 6 | 0.988 4 | 0.16 | 1.22 | ||
| 文献[ | 44.63 | 42.12 | 0.993 2 | 0.991 0 | — | — | 
| 本文网络 | 43.43 | 42.20 | 0.991 4 | 0.988 9 | 1.13 | 2.35 | 
Tab. 1 Evaluation indexes and computational complexity
| 网络 | 评价指标 | 计算时间/s | 参数量/106 | |||
|---|---|---|---|---|---|---|
| PSNR-μ/dB | PSNR-l/dB | SSIM-μ | SSIM-l | |||
| 文献[ | 40.80 | 38.11 | 0.980 8 | 0.972 1 | 73.96 | 0.00 | 
| 文献[ | 35.79 | 30.76 | 0.971 7 | 0.950 3 | — | — | 
| 文献[ | 42.67 | 41.23 | 0.988 8 | 0.984 6 | 32.79 | 0.38 | 
| 文献[ | 41.65 | 40.88 | 0.986 0 | 0.985 8 | 0.18 | 20.40 | 
| 文献[ | 42.41 | 41.43 | 0.987 7 | 0.985 7 | 0.16 | 38.10 | 
| 文献[ | 43.63 | 41.14 | 0.990 0 | 0.970 2 | 0.53 | 1.52 | 
| 文献[ | 43.92 | 41.57 | 0.990 5 | 0.986 5 | 0.26 | 2.56 | 
| 文献[ | 44.06 | 41.57 | 0.990 7 | 0.986 7 | — | — | 
| 文献[ | 43.05 | 41.33 | 0.989 6 | 0.986 6 | — | — | 
| 文献[ | 43.96 | 41.67 | 0.60 | 7.46 | ||
| 文献[ | 44.09 | 41.70 | 0.990 9 | 0.987 2 | — | — | 
| 文献[ | 0.991 6 | 0.988 4 | 0.16 | 1.22 | ||
| 文献[ | 44.63 | 42.12 | 0.993 2 | 0.991 0 | — | — | 
| 本文网络 | 43.43 | 42.20 | 0.991 4 | 0.988 9 | 1.13 | 2.35 | 
| 变体 | 评价指标 | |||
|---|---|---|---|---|
| PSNR-μ/dB | PSNR-l/dB | SSIM-μ | SSIM-l | |
| 基线 | 42.98 | 41.59 | 0.991 1 | 0.987 6 | 
| 变体1 | 43.18 | 41.99 | 0.990 8 | 0.987 6 | 
| 变体2 | 43.38 | 42.06 | 0.991 4 | 0.988 0 | 
| 变体3 | 43.14 | 41.94 | 0.991 3 | 0.987 5 | 
| 变体4 | 43.40 | 41.90 | 0.991 4 | 0.988 7 | 
| 变体5 | 43.43 | 42.20 | 0.991 4 | 0.988 9 | 
Tab. 2 Quantitative comparison of variants
| 变体 | 评价指标 | |||
|---|---|---|---|---|
| PSNR-μ/dB | PSNR-l/dB | SSIM-μ | SSIM-l | |
| 基线 | 42.98 | 41.59 | 0.991 1 | 0.987 6 | 
| 变体1 | 43.18 | 41.99 | 0.990 8 | 0.987 6 | 
| 变体2 | 43.38 | 42.06 | 0.991 4 | 0.988 0 | 
| 变体3 | 43.14 | 41.94 | 0.991 3 | 0.987 5 | 
| 变体4 | 43.40 | 41.90 | 0.991 4 | 0.988 7 | 
| 变体5 | 43.43 | 42.20 | 0.991 4 | 0.988 9 | 
| 1 | FROEHLICH J, GRANDINETTI S, EBERHARDT B, et al. Creating cinematic wide gamut HDR-video for the evaluation of tone mapping operators and HDR-displays [C]// Proceedings of the SPIE 9023, Digital Photography X. Bellingham, WA: SPIE, 2014: No.90230X. | 
| 2 | TOCCI M D, KISER C, TOCCI N, et al. A versatile HDR video production system [J]. ACM Transactions on Graphics, 2011, 30(4): No.41. | 
| 3 | 刘颖,王凤伟,刘卫华,等.基于亮度分区模糊融合的高动态范围成像算法[J].计算机应用, 2020, 40(1): 233-238. | 
| LIU Y, WANG F W, LIU W H, et al. High dynamic range imaging algorithm based on luminance partition fuzzy fusion [J]. Journal of Computer Applications, 2020, 40(1): 233-238. | |
| 4 | MA K, DUANMU Z, ZHU H, et al. Deep guided learning for fast multi-exposure image fusion [J]. IEEE Transactions on Image Processing, 2020, 29: 2808-2819. | 
| 5 | MA K, LI H, YONG H, et al. Robust multi-exposure image fusion: a structural patch decomposition approach [J]. IEEE Transactions on Image Processing, 2017, 26(5): 2519-2532. | 
| 6 | PRABHAKAR K R, SRIKAR V S, BABU R V. DeepFuse: a deep unsupervised approach for exposure fusion with extreme exposure image pairs [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 4724-4732. | 
| 7 | WANG L, YOON K J. Deep learning for HDR imaging: state-of-the-art and future trends [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 8874-8895. | 
| 8 | KALANTARI N K, RAMAMOORTHI R. Deep high dynamic range imaging of dynamic scenes [J]. ACM Transactions on Graphics, 2017, 36(4): No.144. | 
| 9 | PRABHAKAR K R, ARORA R, SWAMINATHAN A, et al. A fast, scalable, and reliable deghosting method for extreme exposure fusion [C]// Proceedings of the 2019 IEEE International Conference on Computational Photography. Piscataway: IEEE, 2019: 1-8. | 
| 10 | DAI J, QI H, XIONG Y, et al. Deformable convolutional networks [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 764-773. | 
| 11 | TAN X, CHEN H, XU K, et al. High dynamic range imaging for dynamic scenes with large-scale motions and severe saturation [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: No.5003415. | 
| 12 | MARÍN-VEGA J, SLOTH M, SCHNEIDER-KAMP P, et al. DRHDR: a dual branch residual network for multi-bracket high dynamic range imaging [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2022: 843-851. | 
| 13 | HASINOFF S W, SHARLET D, GEISS R, et al. Burst photography for high dynamic range and low-light imaging on mobile cameras [J]. ACM Transactions on Graphics, 2016, 35(6): No.192. | 
| 14 | POULI T, BOITARD R, CHAMARET C, et al. HDR in the living room [C]// ACM SIGGRAPH 2014 Studio. New York: ACM, 2014: No.5. | 
| 15 | WANG X, YU K, DONG C, et al. Recovering realistic texture in image super-resolution by deep spatial feature transform [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 606-615. | 
| 16 | BOGONI L. Extending dynamic range of monochrome and color images through fusion [C]// Proceedings of the 15th International Conference on Pattern Recognition, Volume 3. Piscataway: IEEE, 2000: 7-12. | 
| 17 | SEN P, KALANTARI N K, YAESOUBI M, et al. Robust patch-based HDR reconstruction of dynamic scenes [J]. ACM Transactions on Graphics, 2012, 31(6): No.203. | 
| 18 | ZIMMER H, BRUHN A, WEICKERT J. Freehand HDR imaging of moving scenes with simultaneous resolution enhancement [J]. Computer Graphics Forum, 2011, 30(2): 405-414. | 
| 19 | HU J, GALLO O, PULLI K, et al. HDR deghosting: how to deal with saturation? [C]// Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2013: 1163-1170. | 
| 20 | WU S, XU J, TAI Y W, et al. Deep high dynamic range imaging with large foreground motions [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11206. Cham: Springer, 2018: 120-135. | 
| 21 | WANG X, GIRSHICK R, GUPTA, et al. Non-local neural networks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7794-7803. | 
| 22 | YAN Q, ZHANG L, LIU Y, et al. Deep HDR imaging via a non-local network [J]. IEEE Transactions on Image Processing, 2020, 29: 4308-4322. | 
| 23 | NIU Y, WU J, LIU W, et al. HDR-GAN: HDR image reconstruction from multi-exposed LDR images with large motions [J]. IEEE Transactions on Image Processing, 2021, 30: 3885-3896. | 
| 24 | LAND E H, McCANN J J. Lightness and Retinex theory [J]. Journal of the Optical Society of America, 1971, 61(1): 1-11. | 
| 25 | WEI C, WANG W, YANG W, et al. Deep Retinex decomposition for low-light enhancement [C]// Proceedings of the 2018 British Machine Vision Conference. Durham: BMVA Press, 2018: No.451. | 
| 26 | WU K, CHEN J, MA J. DMEF: multi-exposure image fusion based on a novel deep decomposition method [J]. IEEE Transactions on Multimedia, 2023, 25: 5690-5703. | 
| 27 | 王克强,张雨帅,王保群.基于Retinex理论的多曝光图像融合算法[J].计算机应用, 2019, 39(7): 2087-2092. | 
| WANG K Q, ZHANG Y S, WANG B Q. Multi-exposure image fusion algorithm based on Retinex theory [J]. Journal of Computer Applications, 2019, 39(7): 2087-2092. | |
| 28 | SINGH S, SINGH H, GEHLOT A, et al. IR and visible image fusion using DWT and bilateral filter [J]. Microsystem Technologies, 2023, 29(4): 457-467. | 
| 29 | LI Q, SHEN L, GUO S, et al. WaveCNet: wavelet integrated CNNs to suppress aliasing effect for noise-robust image classification [J]. IEEE Transactions on Image Processing, 2021, 30: 7074-7089. | 
| 30 | XU J, YUAN M, YAN D M, et al. Illumination guided attentive wavelet network for low-light image enhancement [J]. IEEE Transactions on Multimedia, 2023, 25: 6258-6271. | 
| 31 | JI Z, JUNG C. Subband adaptive enhancement of low light images using wavelet-based convolutional neural networks [C]// Proceedings of the 2021 IEEE International Conference on Image Processing. Piscataway: IEEE, 2021: 1669-1673. | 
| 32 | FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3141-3149. | 
| 33 | ZHAO H, JIA J, KOLTUN V. Exploring self-attention for image recognition [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10073-10082. | 
| 34 | 刘辉,张琳玉,王复港,等.基于注意力机制和上下文信息的目标检测算法[J].计算机应用, 2023, 43(5): 1557-1564. | 
| LIU H, ZHANG L Y, WANG F G, et al. Object detection algorithm based on attention mechanism and context information [J]. Journal of Computer Applications, 2023, 43(5): 1557-1564. | |
| 35 | DAI W, WANG K. An image edge detection algorithm based on local entropy [C]// Proceedings of the 2007 IEEE International Conference on Integration Technology. Piscataway: IEEE, 2007: 418-420. | 
| 36 | YAN Q, GONG D, SHI Q, et al. Attention-guided network for ghost-free high dynamic range imaging [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1751-1760. | 
| 37 | LIU L, LIU J, YUAN S, et al. Wavelet-based dual-branch network for image demoiréing [C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12358. Cham: Springer, 2020: 86-102. | 
| 38 | LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. | 
| 39 | LIANG J, CAO J, SUN G, et al. SwinIR: image restoration using Swin Transformer [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2021: 1833-1844. | 
| 40 | YE Q, XIAO J, LAM K M, et al. Progressive and selective fusion network for high dynamic range imaging [C]// Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 5290-5297. | 
| 41 | HUANG Y M, CHIANG J C, CHEN S G. HDR-AGAN: ghost-free high dynamic range imaging with attention guided adversarial network [C]// Proceedings of the 2022 IEEE International Conference on Image Processing. Piscataway: IEEE, 2022: 3316-3320. | 
| 42 | SONG J W, PARK Y I, KONG K, et al. Selective TransHDR: Transformer-based selective HDR imaging using ghost region mask [C]// Proceedings of the 2022 European Conference on Computer Vision, LNCS 13677. Cham: Springer, 2022: 288-304. | 
| 43 | LIU Z, WANG Y, ZENG B, et al. Ghost-free high dynamic range imaging with context-aware Transformer [C]// Proceedings of the 2022 European Conference on Computer Vision, LNCS 13679. Cham: Springer, 2022: 344-360. | 
| 44 | REN H, FAN Y, HUANG S. Robust real-world image enhancement based on multi-exposure LDR images [C]// Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2023: 1715-1723. | 
| 45 | TURSUN O T, AKYÜZ A O, ERDEM A, et al. An objective deghosting quality metric for HDR images [J]. Computer Graphics Forum, 2016, 35(2): 139-152. | 
| [1] | Jie XU, Yong ZHONG, Yang WANG, Changfu ZHANG, Guanci YANG. Facial attribute estimation and expression recognition based on contextual channel attention mechanism [J]. Journal of Computer Applications, 2025, 45(1): 253-260. | 
| [2] | Junying CHEN, Shijie GUO, Lingling CHEN. Lightweight human pose estimation based on decoupled attention and ghost convolution [J]. Journal of Computer Applications, 2025, 45(1): 223-233. | 
| [3] | Lifang WANG, Jingshuang WU, Pengliang YIN, Lihua HU. Action recognition algorithm based on attention mechanism and energy function [J]. Journal of Computer Applications, 2025, 45(1): 234-239. | 
| [4] | Jialin ZHANG, Qinghua REN, Qirong MAO. Speaker verification system utilizing global-local feature dependency for anti-spoofing [J]. Journal of Computer Applications, 2025, 45(1): 308-317. | 
| [5] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. | 
| [6] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. | 
| [7] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. | 
| [8] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. | 
| [9] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. | 
| [10] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. | 
| [11] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. | 
| [12] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. | 
| [13] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. | 
| [14] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. | 
| [15] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||