Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (5): 1325-1337.DOI: 10.11772/j.issn.1001-9081.2024020208
Special Issue: 进化计算专题(2024年第5期“进化计算专题”导读,全文即将上线)
• Special issue on evolutionary calculation •
Jiawei ZHAO1, Xuefeng CHEN1, Liang FENG1(), Yaqing HOU2, Zexuan ZHU3, Yew‑Soon Ong4
Received:
2024-03-04
Revised:
2024-03-26
Accepted:
2024-03-28
Online:
2024-04-26
Published:
2024-05-10
Contact:
Liang FENG
About author:
ZHAO Jiawei, born in 1998, Ph. D. candidate. His research interests include transfer learning, evolutionary algorithms, multitasking optimization.Supported by:
赵佳伟1, 陈雪峰1, 冯亮1(), 候亚庆2, 朱泽轩3, Yew‑Soon Ong4
通讯作者:
冯亮
作者简介:
赵佳伟(1998—),男,山西运城人,博士研究生,主要研究方向:迁移学习、进化算法、多任务优化基金资助:
CLC Number:
Jiawei ZHAO, Xuefeng CHEN, Liang FENG, Yaqing HOU, Zexuan ZHU, Yew‑Soon Ong. Review of evolutionary multitasking from the perspective of optimization scenarios[J]. Journal of Computer Applications, 2024, 44(5): 1325-1337.
赵佳伟, 陈雪峰, 冯亮, 候亚庆, 朱泽轩, Yew‑Soon Ong. 优化场景视角下的进化多任务优化综述[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1325-1337.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024020208
1 | BACK T, HAMMEL U, H-P SCHWEFEL. Evolutionary computation: comments on the history and current state[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 3-17. 10.1109/4235.585888 |
2 | MAN K F, TANG K S, KWONG S. Genetic algorithms: concepts and applications [in engineering design] [J]. IEEE Transactions on Industrial Electronics, 1996, 43(5): 519-534. 10.1109/41.538609 |
3 | KICINGER R, ARCISZEWSKI T, JONG K D. Evolutionary computation and structural design: a survey of the state-of-the-art[J]. Computers & Structures, 2005, 83(23/24): 1943-1978. 10.1016/j.compstruc.2005.03.002 |
4 | CARUANA R. Multitask learning[J]. Machine Learning, 1997, 28(1): 41-75. 10.1023/a:1007379606734 |
5 | 温民伟,梅红岩,袁凤源,等.多任务推荐算法研究综述[J].计算机科学与探索,2024,18(2):363-377. 10.3778/j.issn.1673-9418.2303014 |
WEN M W, MEI H Y, YUAN F Y, et al. Survey of evolutionary multitasking optimization [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 363-377. 10.3778/j.issn.1673-9418.2303014 | |
6 | 李红光,王菲,丁文锐.面向目标分类识别的多任务学习算法综述[J].航空学报,2022,43(1):024889. 10.7527/S1000-6893.2021.24889 |
LI H G, WANG F, DING W R. Survey on multi-task learning for object classification and recognition[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 024889. 10.7527/S1000-6893.2021.24889 | |
7 | 黄兆培,张峰源,赵金明,等.情感识别中的迁移学习问题综述[J].信号处理,2023,39(4):588-615. |
HUANG Z P, ZHANG F Y, ZHAO J M, et al. A survey of transfer learning problems in emotion recognition[J]. Journal of Signal Processing, 2023, 39(4): 588-615. | |
8 | GREFFENSTETTE J J, BAKER J E. How genetic algorithms work: a critical look at implicit parallelism[C]// Proceedings of the 3rd International Conference on Genetic Algorithms. San Francisco, CA: Morgan Kaufmann Publishers Inc., 1989: 20-27. |
9 | GUPTA A, Y-S ONG, FENG L. Insights on transfer optimization: because experience is the best teacher[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2018, 2(1): 51-64. 10.1109/tetci.2017.2769104 |
10 | TAN K C, FENG L, JIANG M. Evolutionary transfer optimization-a new frontier in evolutionary computation research[J]. IEEE Computational Intelligence Magazine, 2021, 16(1): 22-33. 10.1109/mci.2020.3039066 |
11 | GUPTA A, Y-S ONG, FENG L. Multifactorial evolution: toward evolutionary multitasking[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(3): 343-357. 10.1109/tevc.2015.2458037 |
12 | RICE J, CLONINGER C R, REICH T. Multifactorial inheritance with cultural transmission and assortative mating Ⅰ: description and basic properties of the unitary models [J]. American Journal of Human Genetics, 1978, 30(6): 618-643. |
13 | CLONINGER C R, RICE J, REICH T. Multifactorial inheritance with cultural transmission and assortative mating Ⅱ: a general model of combined polygenic and cultural inheritance [J]. American Journal of Human Genetics, 1979, 31(2): 176-198. 10.1002/pssc.200778459 |
14 | IQBAL M, BROWNE W N, ZHANG M. Reusing building blocks of extracted knowledge to solve complex, large-scale boolean problems[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 465-480. 10.1109/tevc.2013.2281537 |
15 | MILLS R, JANSEN T, WATSON R A. Transforming evolutionary search into higher-level evolutionary search by capturing problem structure[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(5): 628-642. 10.1109/tevc.2014.2347702 |
16 | WEI T, WANG S, ZHONG J, et al. A review on evolutionary multitask optimization: trends and challenges[J]. IEEE Transactions on Evolutionary Computation, 2022, 26(5): 941-960. 10.1109/tevc.2021.3139437 |
17 | ZHAO H, NING X, LIU X, et al. What makes evolutionary multi-task optimization better: a comprehensive survey[J]. Applied Soft Computing, 2023, 145: 110545. 10.1016/j.asoc.2023.110545 |
18 | 李豪,汪磊,张元侨,等.演化多任务优化研究综述[J].软件学报,2023,34(2): 509-538. 10.1109/tevc.2022.3141819 |
LI H, WANG L, ZHANG Y Q, et al. Survey of evolutionary multitasking optimization [J]. Journal of Software, 2023, 34(2): 509-538. 10.1109/tevc.2022.3141819 | |
19 | XU Q, WANG N, WANG L, et al. Multi-task optimization and multi-task evolutionary computation in the past five years: a brief review[J]. Mathematics, 2021, 9(8): 864. 10.3390/math9080864 |
20 | OSABA E, DEL SER J, MARTINEZ A D, et al. Evolutionary multitask optimization: a methodological overview, challenges, and future research directions[J]. Cognitive Computation, 2022, 14: 927-954. 10.1007/s12559-022-10012-8 |
21 | TAN Z, LUO L, ZHONG J. Knowledge transfer in evolutionary multi-task optimization: a survey[J]. Applied Soft Computing, 2023, 138: 110182. 10.1016/j.asoc.2023.110182 |
22 | WU Y, DING H, XIANG B, et al. Evolutionary multitask optimization in real-world applications: a survey[J]. Journal of Artificial Intelligence and Technology, 2023, 3: 32-38. 10.37965/jait.2023.0149 |
23 | GUPTA A, ZHOU L, Y-S ONG, et al. Half a dozen real-world applications of evolutionary multitasking, and more[J]. IEEE Computational Intelligence Magazine, 2022, 17(2): 49-66. 10.1109/mci.2022.3155332 |
24 | ZHOU L, FENG L, ZHONG J, et al. A study of similarity measure between tasks for multifactorial evolutionary algorithm[C]// Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion. New York: ACM, 2018: 229-230. 10.1145/3205651.3205736 |
25 | XU M, ZHU Z, QI Y, et al. An adaptive multi-objective multifactorial evolutionary algorithm based on mixture Gaussian distribution[C]// Proceedings of the 2021 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2021: 1696-1703. 10.1109/cec45853.2021.9504928 |
26 | MA X, ZHENG Y, ZHU Z, et al. Improving evolutionary multitasking optimization by leveraging inter-task gene similarity and mirror transformation[J]. IEEE Computational Intelligence Magazine, 2021, 16(4): 38-53. 10.1109/mci.2021.3108311 |
27 | CAI Y, PENG D, LIU P, et al. Evolutionary multi-task optimization with hybrid knowledge transfer strategy[J]. Information Sciences, 2021, 580(C): 874-896. 10.1016/j.ins.2021.09.021 |
28 | HUYNH T T B, NGUYEN Q T, DOAN C T L. A multi-objective multi-factorial evolutionary algorithm with reference-point-based approach[C]// Proceedings of the 2019 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2019: 2824-2831. 10.1109/cec.2019.8790034 |
29 | BALI K K, GUPTA A, FENG L, et al. Linearized domain adaptation in evolutionary multitasking[C]// Proceedings of the 2017 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2017: 1295-1302. 10.1109/cec.2017.7969454 |
30 | LI J-Y, ZHAN Z-H, TAN K C, et al. A meta-knowledge transfer-based differential evolution for multitask optimization[J]. IEEE Transactions on Evolutionary Computation, 2022, 26(4): 719-734. 10.1109/tevc.2021.3131236 |
31 | LIN J, LIU H-L, TAN K C, et al. An effective knowledge transfer approach for multiobjective multitasking optimization[J]. IEEE Transactions on Cybernetics, 2021, 51(6): 3238-3248. 10.1109/tcyb.2020.2969025 |
32 | LIN J, LIU H-L, XUE B, et al. Multiobjective multitasking optimization based on incremental learning[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(5): 824-838. 10.1109/tevc.2019.2962747 |
33 | FENG Y, FENG L, HOU Y, et al. Large-scale optimization via evolutionary multitasking assisted random embedding[C]// Proceedings of the 2020 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2020: 1-8. 10.1109/cec48606.2020.9185660 |
34 | XU H, QIN A K, XIA S. Evolutionary multitask optimization with adaptive knowledge transfer[J]. IEEE Transactions on Evolutionary Computation, 2022, 26(2): 290-303. 10.1109/tevc.2021.3107435 |
35 | YU Y, ZHU A, ZHU Z, et al. Multifactorial differential evolution with opposition-based learning for multi-tasking optimization[C]// Proceedings of the 2019 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2019: 1898-1905. 10.1109/cec.2019.8790024 |
36 | GONG M, TANG Z, LI H, et al. Evolutionary multitasking with dynamic resource allocating strategy[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(5): 858-869. 10.1109/tevc.2019.2893614 |
37 | BALI K K, Y-S ONG, GUPTA A, et al. Multifactorial evolutionary algorithm with online transfer parameter estimation: MFEA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(1): 69-83. 10.1109/tevc.2019.2906927 |
38 | WEN Y W, TING C K. Parting ways and reallocating resources in evolutionary multitasking[C]// Proceedings of the 2017 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2017: 2404-2411. 10.1109/cec.2017.7969596 |
39 | ZHOU L, FENG L, TAN K C, et al. Toward adaptive knowledge transfer in multifactorial evolutionary computation[J]. IEEE Transactions on Cybernetics, 2021, 51(5): 2563-2576. 10.1109/tcyb.2020.2974100 |
40 | FENG L, ZHOU L, ZHONG J, et al. Evolutionary multitasking via explicit autoencoding[J]. IEEE Transactions on Cybernetics, 2019, 49(9): 3457-3470. 10.1109/tcyb.2018.2845361 |
41 | SHANG Q, ZHANG L, FENG L, et al. A preliminary study of adaptive task selection in explicit evolutionary many-tasking[C]// Proceedings of the 2019 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2019: 2153-2159. 10.1109/cec.2019.8789909 |
42 | HUANG Y, FENG L, QIN A K, et al. Towards large-scale evolutionary multi-tasking: a GPU-based paradigm[J]. IEEE Transactions on Evolutionary Computation, 2022, 26(3): 585-598. 10.1109/tevc.2021.3110506 |
43 | ZHANG N, GUPTA A, CHEN Z, et al. Evolutionary machine learning with minions: a case study in feature selection[J]. IEEE Transactions on Evolutionary Computation, 2022, 26(1): 130-144. 10.1109/tevc.2021.3099289 |
44 | WU Y, LIU Y, GONG M, et al. Multi-view point cloud registration based on evolutionary multitasking with bi-channel knowledge sharing mechanism[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 7(2): 357-374. 10.1109/tetci.2022.3205384 |
45 | WRIGHT S J, NOWAK R D, FIGUEIREDO M A T. Sparse reconstruction by separable approximation[J]. IEEE Transactions on Signal Processing, 2009, 57(7): 2479-2493. 10.1109/tsp.2009.2016892 |
46 | LI H, Y-S ONG, GONG M, et al. Evolutionary multitasking sparse reconstruction: framework and case study[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(5): 733-747. 10.1109/tevc.2018.2881955 |
47 | ZHANG F, MEI Y, NGUYEN S, et al. Multitask genetic programming-based generative hyperheuristics: a case study in dynamic scheduling[J]. IEEE Transactions on Cybernetics, 2022, 52(10): 10515-10528. 10.1109/tcyb.2021.3065340 |
48 | ZHOU L, FENG L, ZHONG J, et al. Evolutionary multitasking in combinatorial search spaces: a case study in capacitated vehicle routing problem[C]// Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence. Piscataway: IEEE, 2016: 1-8. 10.1109/ssci.2016.7850039 |
49 | 李坚强,蔡俊创,孙涛,等.面向复杂物流配送场景的车辆路径规划多任务辅助进化算法[J].自动化学报,2024,50(3):544-559. |
LI J Q, CAI J C, SUN T, et al. Multitask-based assisted evolutionary algorithm for vehicle routing problems in complex logistics distribution scenarios [J]. Acta Automatica Sinica, 2024, 50(3): 544-559. | |
50 | DA B, GUPTA A, Y-S ONG. Curbing negative influences online for seamless transfer evolutionary optimization[J]. IEEE Transactions on Cybernetics, 2019, 49(12): 4365-4378. 10.1109/tcyb.2018.2864345 |
51 | 刘华平,郭迪,孙富春,等.基于形态的具身智能研究:历史回顾与前沿进展[J].自动化学报,2023, 49(6): 1131-1154. |
LIU H P, GUO D, SUN F C, et al. Morphology-based embodied intelligence: historical retrospect and research progress [J]. Acta Automatica Sinica, 2023, 49(6): 1131-1154. | |
52 | MOSHAIOV A, TAL A. Family bootstrapping: a genetic transfer learning approach for onsetting the evolution for a set of related robotic tasks[C]// Proceedings of the 2014 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2014: 2801-2808. 10.1109/cec.2014.6900571 |
53 | Y-S ONG, GUPTA A. Evolutionary multitasking: a computer science view of cognitive multitasking[J]. Cognitive Computation, 2016, 8: 125-142. 10.1007/s12559-016-9395-7 |
54 | GEN Y, XIAO H, TOSHIHARU H. Multifactorial optimization using artificial bee colony and its application to car structure design optimization[C]// Proceedings of the 2019 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2019: 3404-3409. 10.1109/cec.2019.8789940 |
55 | KRENTEL M W. The complexity of optimization problems[J]. Journal of Computer and System Sciences, 1988, 36(3): 490-509. 10.1016/0022-0000(88)90039-6 |
56 | PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359. 10.1109/tkde.2009.191 |
57 | KNOWLES J D, WATSON R A, CORNE D W. Reducing local optima in single-objective problems by multi-objectivization[C]// Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization, LNCS 1993. Berlin: Springer, 2001: 269-283. |
58 | MA X, YIN J, ZHU A, et al. Enhanced multifactorial evolutionary algorithm with meme helper-tasks[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 7837-7851. 10.1109/tcyb.2021.3050516 |
59 | DA B, Y-S ONG, FENG L, et al. Evolutionary multitasking for single-objective continuous optimization: benchmark problems, performance metric, and baseline results[EB/OL]. [2023-12-09]. . |
60 | DA B, GUPTA A, Y-S ONG, et al. Evolutionary multitasking across single and multi-objective formulations for improved problem solving[C]// Proceedings of the 2016 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2016: 1695-1701. 10.1109/cec.2016.7743992 |
61 | ZHENG Y, ZHU Z, QI Y, et al. Multi-objective multifactorial evolutionary algorithm enhanced with the weighting helper-task[C]// Proceedings of the 2020 2nd International Conference on Industrial Artificial Intelligence. Piscataway: IEEE, 2020: 1-6. 10.1109/iai50351.2020.9262200 |
62 | YUAN Y, Y-S ONG, FENG L, et al. Evolutionary multitasking for multiobjective continuous optimization: benchmark problems, performance metrics and baseline results[EB/OL]. [2023-12-15]. . 10.48550/arXiv.1706.02766 |
63 | ZHANG L, XIE Y, CHEN J, et al. A study on multiform multi-objective evolutionary optimization[J]. Memetic Computing, 2021, 13: 307-318. 10.1007/s12293-021-00331-y |
64 | ZITZLER E, DEB K, THIELE L. Comparison of multiobjective evolutionary algorithms: empirical results[J]. Evolutionary Computation, 2000, 8(2): 173-195. 10.1162/106365600568202 |
65 | DEB K, THIELE L, LAUMANNS M, et al. Scalable test problems for evolutionary multiobjective optimization[M]// Evolutionary Multiobjective Optimization: Theoretical Advances and Applications. London: Springer, 2005: 105-145. |
66 | HUANG L, FENG L, WANG H, et al. A preliminary study of improving evolutionary multi-objective optimization via knowledge transfer from single-objective problems[C]// Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE, 2020: 1552-1559. 10.1109/smc42975.2020.9283151 |
67 | WU Y, DING H, GONG M, et al. Evolutionary multiform optimization with two-stage bidirectional knowledge transfer strategy for point cloud registration[J]. IEEE Transactions on Evolutionary Computation, 2024, 28(1): 62-76. 10.1109/tevc.2022.3215743 |
68 | SIMON D. Evolutionary Optimization Algorithms: Biologically-Inspired and Population-based Approaches to Computer Intelligence[M]. Hoboken: John Wiley & Sons Inc., 2013. |
69 | HOU Y, JIANG N, GE H, et al. Memetic multi-agent optimization in high dimensions using random embeddings[C]// Proceedings of the 2019 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2019: 135-141. 10.1109/cec.2019.8790168 |
70 | FENG Y, FENG L, HOU Y, et al. Large-scale optimization via evolutionary multitasking assisted random embedding[C]// Proceedings of the 2020 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2020: 1-8. 10.1109/cec48606.2020.9185660 |
71 | PATERAKIS N G, GIBESCU M, BAKIRTZIS A G, et al. A multi-objective optimization approach to risk-constrained energy and reserve procurement using demand response[J]. IEEE Transactions on Power Systems, 2018, 33(4): 3940-3954. 10.1109/tpwrs.2017.2785266 |
72 | XIANG Y, YANG X, ZHOU Y, et al. Enhancing decomposition-based algorithms by estimation of distribution for constrained optimal software product selection[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(2): 245-259. 10.1109/tevc.2019.2922419 |
73 | MA Z, WANG Y. Evolutionary constrained multiobjective optimization: test suite construction and performance comparisons[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(6): 972-986. 10.1109/tevc.2019.2896967 |
74 | QIAO K, YU K, QU B, et al. An evolutionary multitasking optimization framework for constrained multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2022, 26(2): 263-277. 10.1109/tevc.2022.3145582 |
75 | LIU D, HUANG S, ZHONG J. Surrogate-assisted multi-tasking memetic algorithm[C]// Proceedings of the 2018 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2018: 1-8. 10.1109/cec.2018.8477830 |
76 | WANG H, FENG L, JIN Y, et al. Surrogate-assisted evolutionary multitasking for expensive minimax optimization in multiple scenarios[J]. IEEE Computational Intelligence Magazine, 2021, 16(1): 34-48. 10.1109/mci.2020.3039067 |
77 | LIAO P, SUN C, ZHANG G, et al. Multi-surrogate multi-tasking optimization of expensive problems[J]. Knowledge-Based Systems, 2020, 205: 106262. 10.1016/j.knosys.2020.106262 |
78 | YUAN Y, Y-S ONG, GUPTA A, et al. Evolutionary multitasking in permutation-based combinatorial optimization problems: realization with TSP, QAP, LOP, and JSP[C]// Proceedings of the 2016 IEEE Region 10 Conference. Piscataway: IEEE, 2016: 3157-3164. 10.1109/tencon.2016.7848632 |
79 | FENG L, ZHOU L, GUPTA A, et al. Solving generalized vehicle routing problem with occasional drivers via evolutionary multitasking[J]. IEEE Transactions on Cybernetics, 2021, 51(6): 3171-3184. 10.1109/tcyb.2019.2955599 |
80 | FENG L, HUANG Y, ZHOU L, et al. Explicit evolutionary multitasking for combinatorial optimization: a case study on capacitated vehicle routing problem[J]. IEEE Transactions on Cybernetics, 2021, 51(6): 3143-3156. 10.1109/tcyb.2019.2962865 |
81 | HUANG Y, ZHOU W, WANG Y, et al. Evolutionary multitasking with centralized learning for large-scale combinatorial multi-objective optimization[J/OL]. IEEE Transactions on Evolutionary Computation, 2023 (Early Access) [2024-01-16]. . 10.1109/tevc.2023.3323877 |
82 | LIU C, ZHENG C-T, WU S, et al. Multitask feature selection by graph-clustered feature sharing[J]. IEEE Transactions on Cybernetics, 2020, 50(1): 74-86. 10.1109/tcyb.2018.2864107 |
83 | LIN J, CHEN Q, XUE B, et al. Evolutionary multitasking for multi-objective feature selection in classification[J/OL]. IEEE Transactions on Evolutionary Computation, 2023 (Early Access) [2024-01-18]. . 10.1109/tevc.2023.3338740 |
84 | SHEN F, LIU J, WU K. Evolutionary multitasking network reconstruction from time series with online parameter estimation[J]. Knowledge-Based Systems, 2021, 222: 107019. 10.1016/j.knosys.2021.107019 |
85 | CHENG M-Y, GUPTA A, Y-S ONG, et al. Coevolutionary multitasking for concurrent global optimization: with case studies in complex engineering design[J]. Engineering Applications of Artificial Intelligence, 2017, 64: 13-24. 10.1016/j.engappai.2017.05.008 |
86 | LIAO T, SOCHA K, MONTES DE OCA M A, et al. Ant colony optimization for mixed-variable optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 503-518. 10.1109/tevc.2013.2281531 |
87 | CHANDRA R, GUPTA A, Y-S ONG, et al. Evolutionary multi-task learning for modular training of feedforward neural networks[C]// Proceedings of the 2016 23rd International Conference on Neural Information Processing, LNTCS 9948. Cham: Springer, 2016: 37-46. |
88 | CHANDRA R, Y-S ONG, C-K GOH. Co-evolutionary multi-task learning with predictive recurrence for multi-step chaotic time series prediction[J]. Neurocomputing, 2017, 243: 21-34. 10.1016/j.neucom.2017.02.065 |
89 | BAO L, QI Y, SHEN M, et al. An evolutionary multitasking algorithm for cloud computing service composition[C]// Proceedings of the 14th World Congress on Services, LNPSE 10975. Cham: Springer, 2018: 130-144. |
90 | CHOONG H X, Y-S ONG, GUPTA A, et al. Jack and masters of all trades: one-pass learning of a set of model sets from foundation models[J]. IEEE Computational Intelligence Magazine, 2023, 18(3): 29-40. 10.1109/mci.2023.3277769 |
91 | WANG C, ZHANG G, GROSSE R. Picking winning tickets before training by preserving gradient flow[C/OL]// Proceedings of the 8th International Conference on Learning Representations. [S.l.]: ICLR, 2020 [2023-12-09]. . |
92 | RENDA A, FRANKLE J, CARBIN M. Comparing rewinding and fine-tuning in neural network pruning[EB/OL]. [2024-01-12]. . |
93 | TANG Z, GONG M, WU Y, et al. Regularized evolutionary multitask optimization: learning to intertask transfer in aligned subspace[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(2): 262-276. 10.1109/tevc.2020.3023480 |
94 | CHEN Z, ZHOU Y, HE X, et al. Learning task relationships in evolutionary multitasking for multiobjective continuous optimization[J]. IEEE Transactions on Cybernetics, 2022, 52(6): 5278-5289. 10.1109/tcyb.2020.3029176 |
95 | ELSHAWI R, MAHER M, SAKR S. Automated machine learning: state-of-the-art and open challenges[EB/OL]. [2023-12-16]. . |
96 | ABDELHAFEZ A, ALBA E, LUQUE G. Performance analysis of synchronous and asynchronous distributed genetic algorithms on multiprocessors[J]. Swarm and Evolutionary Computation, 2019, 49: 147-157. 10.1016/j.swevo.2019.06.003 |
97 | ALETI A, MOSER I. A systematic literature review of adaptive parameter control methods for evolutionary algorithms[J]. ACM Computing Surveys, 2016, 49(3): Article No. 56. 10.1145/2996355 |
98 | KIRANKUMAR K, SUMANA M. Effective allocation of resources and task scheduling in heterogeneous parallel environment[J]. International Journal of Engineering Systems Modelling and Simulation, Inderscience Publishers, 2023, 14(3): 168-177. 10.1504/ijesms.2023.131792 |
99 | TU X, ZHU K, NGUYEN C L, et al. Incentive mechanisms for federated learning: from economic and game theoretic perspective[J]. IEEE Transactions on Cognitive Communications and Networking, 2022, 8(3): 1566-1593. 10.1109/tccn.2022.3177522 |
100 | PENG H, BAO S, LI L. A survey of security protection methods for deep learning model[J]. IEEE Transactions on Artificial Intelligence, 2024, 5(4): 1533-1553. 10.1109/tai.2023.3314398 |
101 | BAI L, LIN W, GUPTA A, et al. From multitask gradient descent to gradient-free evolutionary multitasking: a proof of faster convergence[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8561-8573. 10.1109/tcyb.2021.3052509 |
102 | ZELINKA I. A survey on evolutionary algorithms dynamics and its complexity — mutual relations, past, present and future[J]. Swarm and Evolutionary Computation, 2015, 25: 2-14. 10.1016/j.swevo.2015.06.002 |
103 | HAGHIGHI M, MARASLIS K, TRYFONAS T, et al. Game theoretic approach towards optimal multi-tasking and data-distribution in IoT[C]// Proceedings of the 2015 IEEE 2nd World Forum on Internet of Things. Piscataway: IEEE, 2015: 406-411. 10.1109/wf-iot.2015.7389089 |
104 | SILVA B N, KHAN M, HAN K. Towards sustainable smart cities: a review of trends, architectures, components, and open challenges in smart cities[J]. Sustainable Cities and Society, 2018, 38: 697-713. 10.1016/j.scs.2018.01.053 |
105 | ALVES M P, DELICATO F C, SANTOS I L, et al. LW‑CoEdge: a lightweight virtualization model and collaboration process for edge computing[J]. World Wide Web, 2020, 23: 1127-1175. 10.1007/s11280-019-00722-9 |
[1] | Xiaobing WANG, Xiongwei ZHANG, Tieyong CAO, Yunfei ZHENG, Yong WANG. Self-distillation object segmentation method via scale-attention knowledge transfer [J]. Journal of Computer Applications, 2024, 44(1): 129-137. |
[2] | Maozu GUO, Yazhe ZHANG, Lingling ZHAO. Electric vehicle charging station siting method based on spatial semantics and individual activities [J]. Journal of Computer Applications, 2023, 43(9): 2819-2827. |
[3] | Saijuan XU, Zhenyu PEI, Jiawei LIN, Genggeng LIU. Constrained multi-objective evolutionary algorithm based on multi-stage search [J]. Journal of Computer Applications, 2023, 43(8): 2345-2351. |
[4] | Erchao LI, Yanli CHENG. Dynamic multi-objective optimization algorithm based on weight vector clustering [J]. Journal of Computer Applications, 2023, 43(7): 2226-2236. |
[5] | Zhihui GAO, Meng HAN, Shujuan LIU, Ang LI, Dongliang MU. Survey of high utility itemset mining methods based on intelligent optimization algorithm [J]. Journal of Computer Applications, 2023, 43(6): 1676-1686. |
[6] | Bin WANG, Tian XIANG, Yidong LYU, Xiaofan WANG. Adaptive multi-scale feature channel grouping optimization algorithm based on NSGA‑Ⅱ [J]. Journal of Computer Applications, 2023, 43(5): 1401-1408. |
[7] | Zhongbo HU, Xupeng WANG. Multifactorial backtracking search optimization algorithm for solving automated test case generation problem [J]. Journal of Computer Applications, 2023, 43(4): 1214-1219. |
[8] | Erchao LI, Shenghui ZHANG. Dynamic multi-objective optimization algorithm based on adaptive prediction of new evaluation index [J]. Journal of Computer Applications, 2023, 43(10): 3178-3187. |
[9] | Kuineng CHEN, Xiaofang YUAN. Multi-objective hybrid evolutionary algorithm for solving open-shop scheduling problem with controllable processing time [J]. Journal of Computer Applications, 2022, 42(8): 2617-2627. |
[10] | Yu SHEN, Hecheng LI, Lijuan CHEN. Evolutionary algorithm based on approximation technique for solving bilevel programming problems [J]. Journal of Computer Applications, 2022, 42(8): 2511-2518. |
[11] | Feifan SHI, Xuhua SHI. Adaptive reference vector based constrained multi-objective evolutionary algorithm [J]. Journal of Computer Applications, 2022, 42(2): 542-549. |
[12] | Wei LI, Yaochi FAN, Qiaoyong JIANG, Lei WANG, Qingzheng XU. Variable convolutional autoencoder method based on teaching-learning-based optimization for medical image classification [J]. Journal of Computer Applications, 2022, 42(2): 592-598. |
[13] | Caitong BAI, Xiaolong CUI, Huiji ZHENG, Ai LI. Robust speech recognition technology based on self-supervised knowledge transfer [J]. Journal of Computer Applications, 2022, 42(10): 3217-3223. |
[14] | Erchao LI, Yuyan MAO. Constrained multi-objective evolutionary algorithm based on space shrinking technique [J]. Journal of Computer Applications, 2021, 41(12): 3419-3425. |
[15] | WEI Chunwu, ZHAO Juanjuan, TANG Xiaoxian, QIANG Yan. Knowledge extraction method for follow-up data based on multi-term distillation network [J]. Journal of Computer Applications, 2021, 41(10): 2871-2878. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||