Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (1): 214-222.DOI: 10.11772/j.issn.1001-9081.2024010045
• Multimedia computing and computer simulation • Previous Articles Next Articles
Jietao LIANG1, Bing LUO1, Lanhui FU1, Qingling CHANG1, Nannan LI2, Ningbo YI3, Qi FENG4, Xin HE4, Fuqin DENG1()
Received:
2024-01-17
Revised:
2024-04-15
Accepted:
2024-04-15
Online:
2024-05-09
Published:
2025-01-10
Contact:
Fuqin DENG
About author:
LIANG Jietao, born in 1999, M. S. candidate. His research interests include point cloud registration.Supported by:
梁杰涛1, 罗兵1, 付兰慧1, 常青玲1, 李楠楠2, 易宁波3, 冯其4, 何鑫4, 邓辅秦1()
通讯作者:
邓辅秦
作者简介:
梁杰涛(1999—),男,广东江门人,硕士研究生,主要研究方向:点云配准;基金资助:
CLC Number:
Jietao LIANG, Bing LUO, Lanhui FU, Qingling CHANG, Nannan LI, Ningbo YI, Qi FENG, Xin HE, Fuqin DENG. Point cloud registration method based on coordinate geometric sampling[J]. Journal of Computer Applications, 2025, 45(1): 214-222.
梁杰涛, 罗兵, 付兰慧, 常青玲, 李楠楠, 易宁波, 冯其, 何鑫, 邓辅秦. 基于坐标几何采样的点云配准方法[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 214-222.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024010045
模块 | MSE(R) | RMSE(R) | MAE(R) | MSE(t) | RMSE(t) | MAE(t) |
---|---|---|---|---|---|---|
ICP | 894.897 339 | 29.914 835 | 23.544 817 | 0.084 643 | 0.084 643 | 0.248 755 |
Go-ICP | 140.477 325 | 11.852 313 | 2.588 463 | 0.000 659 | 0.025 665 | 0.007 092 |
FGR | 87.661 491 | 9.362 772 | 1.999 290 | 0.000 194 | 0.013 939 | 0.002 839 |
PointNetLK | 227.870 331 | 15.095 374 | 4.225 304 | 0.000 487 | 0.022 065 | 0.005 404 |
ADGCNNLK | 61.045 283 | 7.813 148 | 2.854 556 | 0.000 283 | 0.016 822 | 0.004 146 |
DCP | 7.960 885 | 2.821 504 | 1.920 297 | 0.000 445 | 0.021 104 | 0.013 548 |
MFGNet | 2.829 443 | 1.682 095 | 1.134 576 | 0.000 283 | 0.016 835 | 0.002 513 |
GSDCP | 1.944 644 | 1.394 505 | 0.981 491 | 0.000 118 | 0.010 864 | 0.001 986 |
Tab. 1 Test results of unknown shape of point cloud
模块 | MSE(R) | RMSE(R) | MAE(R) | MSE(t) | RMSE(t) | MAE(t) |
---|---|---|---|---|---|---|
ICP | 894.897 339 | 29.914 835 | 23.544 817 | 0.084 643 | 0.084 643 | 0.248 755 |
Go-ICP | 140.477 325 | 11.852 313 | 2.588 463 | 0.000 659 | 0.025 665 | 0.007 092 |
FGR | 87.661 491 | 9.362 772 | 1.999 290 | 0.000 194 | 0.013 939 | 0.002 839 |
PointNetLK | 227.870 331 | 15.095 374 | 4.225 304 | 0.000 487 | 0.022 065 | 0.005 404 |
ADGCNNLK | 61.045 283 | 7.813 148 | 2.854 556 | 0.000 283 | 0.016 822 | 0.004 146 |
DCP | 7.960 885 | 2.821 504 | 1.920 297 | 0.000 445 | 0.021 104 | 0.013 548 |
MFGNet | 2.829 443 | 1.682 095 | 1.134 576 | 0.000 283 | 0.016 835 | 0.002 513 |
GSDCP | 1.944 644 | 1.394 505 | 0.981 491 | 0.000 118 | 0.010 864 | 0.001 986 |
模块 | MSE(R) | RMSE(R) | MAE(R) | MSE(t) | RMSE(t) | MAE(t) |
---|---|---|---|---|---|---|
ICP | 892.601 135 | 29.876 431 | 23.626 110 | 0.086 005 | 0.293 266 | 0.251 916 |
Go-ICP | 192.258 636 | 13.865 736 | 2.914 169 | 0.000 491 | 0.022 154 | 0.006 219 |
FGR | 97.002 747 | 9.848 997 | 1.445 460 | 0.000 182 | 0.013 503 | 0.002 531 |
PointNetLK | 306.323 975 | 17.502 113 | 5.280 545 | 0.000 784 | 0.028 007 | 0.007 203 |
ADGCNNLK | 84.145 566 | 9.173 089 | 3.155 154 | 0.000 454 | 0.021 307 | 0.005 651 |
DCP | 10.030 007 | 3.167 019 | 2.014 827 | 0.000 520 | 0.022 814 | 0.013 855 |
MFGNet | 3.941 372 | 1.959 942 | 1.539 593 | 0.000 420 | 0.020 518 | 0.003 482 |
GSDCP | 1.667 429 | 1.291 290 | 0.919 080 | 0.000 093 | 0.009 659 | 0.002 361 |
Tab. 2 Test results of unknown category of point cloud
模块 | MSE(R) | RMSE(R) | MAE(R) | MSE(t) | RMSE(t) | MAE(t) |
---|---|---|---|---|---|---|
ICP | 892.601 135 | 29.876 431 | 23.626 110 | 0.086 005 | 0.293 266 | 0.251 916 |
Go-ICP | 192.258 636 | 13.865 736 | 2.914 169 | 0.000 491 | 0.022 154 | 0.006 219 |
FGR | 97.002 747 | 9.848 997 | 1.445 460 | 0.000 182 | 0.013 503 | 0.002 531 |
PointNetLK | 306.323 975 | 17.502 113 | 5.280 545 | 0.000 784 | 0.028 007 | 0.007 203 |
ADGCNNLK | 84.145 566 | 9.173 089 | 3.155 154 | 0.000 454 | 0.021 307 | 0.005 651 |
DCP | 10.030 007 | 3.167 019 | 2.014 827 | 0.000 520 | 0.022 814 | 0.013 855 |
MFGNet | 3.941 372 | 1.959 942 | 1.539 593 | 0.000 420 | 0.020 518 | 0.003 482 |
GSDCP | 1.667 429 | 1.291 290 | 0.919 080 | 0.000 093 | 0.009 659 | 0.002 361 |
模块 | MSE(R) | RMSE(R) | MAE(R) | MSE(t) | RMSE(t) | MAE(t) |
---|---|---|---|---|---|---|
ICP | 882.564 209 | 29.707 983 | 23.557 217 | 0.084 537 | 0.290 752 | 0.249 092 |
Go-ICP | 131.182 495 | 11.453 493 | 2.534 873 | 0.000 531 | 0.023 051 | 0.004 192 |
FGR | 607.694 885 | 24.651 468 | 10.055 918 | 0.011 876 | 0.108 977 | 0.027 393 |
PointNetLK | 256.155 548 | 16.004 860 | 4.595 617 | 0.000 465 | 0.021 558 | 0.005 652 |
ADGCNNLK | 70.512 636 | 8.397 180 | 2.559 214 | 0.000 278 | 0.016 673 | 0.004 526 |
DCP | 48.509 663 | 6.964 888 | 4.855 263 | 0.003 790 | 0.061 565 | 0.043 154 |
MFGNet | 19.317 484 | 4.395 166 | 3.610 706 | 0.000 847 | 0.029 113 | 0.009 011 |
GSDCP | 12.772 079 | 3.573 805 | 2.557 062 | 0.000 225 | 0.015 000 | 0.001 812 |
Tab. 3 Test results on dataset containing random noise
模块 | MSE(R) | RMSE(R) | MAE(R) | MSE(t) | RMSE(t) | MAE(t) |
---|---|---|---|---|---|---|
ICP | 882.564 209 | 29.707 983 | 23.557 217 | 0.084 537 | 0.290 752 | 0.249 092 |
Go-ICP | 131.182 495 | 11.453 493 | 2.534 873 | 0.000 531 | 0.023 051 | 0.004 192 |
FGR | 607.694 885 | 24.651 468 | 10.055 918 | 0.011 876 | 0.108 977 | 0.027 393 |
PointNetLK | 256.155 548 | 16.004 860 | 4.595 617 | 0.000 465 | 0.021 558 | 0.005 652 |
ADGCNNLK | 70.512 636 | 8.397 180 | 2.559 214 | 0.000 278 | 0.016 673 | 0.004 526 |
DCP | 48.509 663 | 6.964 888 | 4.855 263 | 0.003 790 | 0.061 565 | 0.043 154 |
MFGNet | 19.317 484 | 4.395 166 | 3.610 706 | 0.000 847 | 0.029 113 | 0.009 011 |
GSDCP | 12.772 079 | 3.573 805 | 2.557 062 | 0.000 225 | 0.015 000 | 0.001 812 |
模块 | MSE(R) | RMSE(R) | MAE(R) | MSE(t) | RMSE(t) | MAE(t) |
---|---|---|---|---|---|---|
FPS+PointNet | 76.249 426 | 8.732 091 | 5.929 955 | 0.005 915 | 0.076 911 | 0.053 945 |
GS+PointNet | 51.354 679 | 7.166 218 | 4.514 465 | 0.003 403 | 0.058 338 | 0.037 922 |
FPS+DGCNN | 7.960 885 | 2.821 504 | 1.920 297 | 0.000 445 | 0.021 104 | 0.013 548 |
GS+DGCNN | 1.944 644 | 1.394 505 | 0.981 491 | 0.000 118 | 0.010 864 | 0.001 986 |
Tab. 4 Results of ablation experiments
模块 | MSE(R) | RMSE(R) | MAE(R) | MSE(t) | RMSE(t) | MAE(t) |
---|---|---|---|---|---|---|
FPS+PointNet | 76.249 426 | 8.732 091 | 5.929 955 | 0.005 915 | 0.076 911 | 0.053 945 |
GS+PointNet | 51.354 679 | 7.166 218 | 4.514 465 | 0.003 403 | 0.058 338 | 0.037 922 |
FPS+DGCNN | 7.960 885 | 2.821 504 | 1.920 297 | 0.000 445 | 0.021 104 | 0.013 548 |
GS+DGCNN | 1.944 644 | 1.394 505 | 0.981 491 | 0.000 118 | 0.010 864 | 0.001 986 |
1 | BESL P J, McKAY N D. Method for registration of 3-D shapes [C]// Proceedings of the SPIE 1611, Sensor Fusion IV: Control Paradigms and Data Structures. Bellingham, WA: SPIE, 1992: No.57955. |
2 | 王飞鹏,肖俊,王颖,等.一种基于高斯曲率的ICP改进算法[J].中国科学院大学学报, 2019, 36(5): 702-708. |
WANG F P, XIAO J, WANG Y, et al. An improved ICP method using Gaussian curvature [J]. Journal of University of Chinese Academy of Sciences, 2019, 36(5): 702-708. | |
3 | SHI X, LIU T, HAN X. Improved Iterative Closest Point (ICP) 3D point cloud registration algorithm based on point cloud filtering and adaptive fireworks for coarse registration [J]. International Journal of Remote Sensing, 2020, 41(8): 3197-3220. |
4 | LIU H, LIU T, LI Y, et al. Point cloud registration based on MCMC-SA ICP algorithm [J]. IEEE Access, 2019, 7: 73637-73648. |
5 | SHI X, PENG J, LI J, et al. The iterative closest point registration algorithm based on the normal distribution transformation [J]. Procedia Computer Science, 2019, 147: 181-190. |
6 | YANG J, LI H, JIA Y. Go-ICP: solving 3D registration efficiently and globally optimally [C]// Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2013: 1457-1464. |
7 | ZHOU Q Y, PARK J, KOLTUN V. Fast global registration [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9906. Cham: Springer, 2016: 766-782. |
8 | QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 77-85. |
9 | QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 5105-5114. |
10 | AOKI Y, GOFORTH H, SRIVATSAN R A, et al. PointNetLK: robust & efficient point cloud registration using PointNet [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7156-7165. |
11 | LUCAS B D, KANADE T. An iterative image registration technique with an application to stereo vision [C]// Proceedings of the 7th International Joint Conference on Artificial Intelligence — Volume 2. San Francisco: Morgan Kaufmann Publishers Inc., 1981: 674-679. |
12 | 秦庭威,赵鹏程,秦品乐,等.基于残差注意力机制的点云配准算法[J].计算机应用, 2022, 42(7): 2184-2191. |
QIN T W, ZHAO P C, QIN P L, et al. Point cloud registration algorithm based on residual attention mechanism [J]. Journal of Computer Applications, 2022, 42(7): 2184-2191. | |
13 | WANG Y, SUN Y, LIU Z, et al. Dynamic graph CNN for learning on point clouds [J]. ACM Transactions on Graphics, 2019, 38(5): No.146. |
14 | WANG Y, SOLOMON J. Deep closest point: learning representations for point cloud registration [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3522-3531. |
15 | 侯维广,付生鹏,夏鑫,等.基于自适应采样和混合注意力的点云配准算法[J].组合机床与自动化加工技术, 2023(12): 45-49. |
HOU W G, FU S P, XIA X, et al. Point cloud registration algorithm based on adaptive sampling and mixed attention [J]. Modular Machine Tool and Automatic Manufacturing Technique, 2023(12): 45-49. | |
16 | 刘旭珩,柏正尧,许祝,等.结合注意力机制的多重引导点云配准网络[J].计算机科学, 2024, 51(2): 142-150. |
LIU X H, BAI Z Y, XU Z, et al. Multi-guided point cloud registration network combined with attention mechanism [J]. Computer Science, 2024, 51(2): 142-150. | |
17 | WANG H, LIU X, KANG W, et al. Multi-features guidance network for partial-to-partial point cloud registration [J]. Neural Computing and Applications, 2022, 34(2): 1623-1634. |
18 | SHE R, KANG Q, WANG S, et al. PointDifformer: robust point cloud registration with neural diffusion and transformer [J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: No.5701015. |
19 | QIN Z, YU H, WANG C, et al. Geometric Transformer for fast and robust point cloud registration [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 11133-11142. |
20 | DENG H, BIRDAL T, ILIC S. PPFNet: global context aware local features for robust 3D point matching [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 195-205. |
21 | SARODE V, LI X, GOFORTH H, et al. PCRNet: point cloud registration network using PointNet encoding [EB/OL]. [2023-05-10]. . |
22 | PAPADOPOULO T, LOURAKIS M I A. Estimating the Jacobian of the singular value decomposition: theory and applications [C]// Proceedings of the 2000 European Conference on Computer Vision, LNCS 1842. Berlin: Springer, 2000: 554-570. |
23 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
24 | VINYALS O, FORTUNATO M, JAITLY N. Pointer networks [C]// Proceedings of the 28th International Conference on Neural Information Processing Systems — Volume 2. Cambridge: MIT Press, 2015: 2692-2700. |
25 | YEW Z J, LEE G H. RPM-Net: robust point matching using learned features [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11821-11830. |
26 | GOLD S, RANGARAJAN A, LU C P, et al. New algorithms for 2D and 3D point matching: pose estimation and correspondence [J]. Pattern Recognition, 1998, 31(8): 1019-1031. |
27 | SINKHORN R. A relationship between arbitrary positive matrices and doubly stochastic matrices [J]. The Annals of Mathematical Statistics, 1964, 35(2): 876-879. |
28 | RUSU R B, BLODOW N, BEETZ M. Fast Point Feature Histograms (FPFH) for 3D registration [C]// Proceedings of the 2009 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2009: 3212-3217. |
29 | YEW Z J, LEE G H. REGTR: end-to-end point cloud correspondences with Transformers [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 6667-6676. |
30 | MATURANA D, SCHERER S. VoxNet: a 3D convolutional neural network for real-time object recognition [C]// Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2015: 922-928. |
31 | WU Z, SONG S, KHOSLA A, et al. 3D ShapeNets: a deep representation for volumetric shapes [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1912-1920. |
32 | ZHOU Y, TUZEL O. VoxelNet: end-to-end learning for point cloud based 3D object detection [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4490-4499. |
33 | XIANG Y, SCHMIDT T, NARAYANAN V, et al. PoseCNN: a convolutional neural network for 6D object pose estimation in cluttered scenes [EB/OL]. [2023-11-09]. . |
34 | BRISTOW H, VALMADRE J, LUCEY S. Dense semantic correspondence where every pixel is a classifier [C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 4024-4031. |
35 | GEORGAKIS G, KARANAM S, WU Z, et al. Matching RGB images to CAD models for object pose estimation [EB/OL]. [2023-11-09]. . |
36 | WANG Y, SOLOMON J. PRNet: self-supervised learning for partial-to-partial registration [C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 8814-8826. |
37 | MOENNING C, DODGSON N A. Fast marching farthest point sampling [R/OL]. [2023-10-25]. . |
38 | LI Y, BU R, SUN M, et al. PointCNN: convolution on X-transformed points [C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018: 828-838. |
39 | WU W, QI Z, LI F. PointConv: deep convolutional networks on 3D point clouds [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9613-9622. |
40 | LIU Y, FAN B, XIANG S, et al. Relation-shape convolutional neural network for point cloud analysis [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 8887-8896. |
41 | HU Q, YANG B, XIE L, et al. RandLA-Net: efficient semantic segmentation of large-scale point clouds [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11105-11114. |
42 | QI H, FENG C, CAO Z, et al. P2B: point-to-box network for 3D object tracking in point clouds [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 6328-6337. |
43 | GROH F, WIESCHOLLEK P, LENSCH H P A. Flex-convolution: million-scale point-cloud learning beyond grid-worlds [C]// Proceedings of the 2018 Asian Conference on Computer Vision, LNCS 11361. Cham: Springer, 2019: 105-122. |
44 | WU C, ZHENG J, PFROMMER J, et al. Attention-based point cloud edge sampling [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 5333-5343. |
[1] | Zongsheng ZHENG, Jia DU, Yuhe CHENG, Zecheng ZHAO, Yuewei ZHANG, Xulong WANG. Cross-modal dual-stream alternating interactive network for infrared-visible image classification [J]. Journal of Computer Applications, 2025, 45(1): 275-283. |
[2] | Xinran XU, Shaobing ZHANG, Miao CHENG, Yang ZHANG, Shang ZENG. Bearings fault diagnosis method based on multi-pathed hierarchical mixture-of-experts model [J]. Journal of Computer Applications, 2025, 45(1): 59-68. |
[3] | Yan YAN, Xingying QIAN, Pengbin YAN, Jie YANG. Federated learning-based statistical prediction and differential privacy protection method for location big data [J]. Journal of Computer Applications, 2025, 45(1): 127-135. |
[4] | Siqi ZHANG, Jinjun ZHANG, Tianyi WANG, Xiaolin QIN. Deep temporal event detection algorithm based on signal temporal logic [J]. Journal of Computer Applications, 2025, 45(1): 90-97. |
[5] | Jieru JIA, Jianchao YANG, Shuorui ZHANG, Tao YAN, Bin CHEN. Unsupervised person re-identification based on self-distilled vision Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2893-2902. |
[6] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[7] | Jinjin LI, Guoming SANG, Yijia ZHANG. Multi-domain fake news detection model enhanced by APK-CNN and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2674-2682. |
[8] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[9] | Liehong REN, Lyuwen HUANG, Xu TIAN, Fei DUAN. Multivariate long-term series forecasting method with DFT-based frequency-sensitive dual-branch Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2739-2746. |
[10] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[11] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[12] | Jiepo FANG, Chongben TAO. Hybrid internet of vehicles intrusion detection system for zero-day attacks [J]. Journal of Computer Applications, 2024, 44(9): 2763-2769. |
[13] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[14] | Xin YANG, Xueni CHEN, Chunjiang WU, Shijie ZHOU. Short-term traffic flow prediction of urban highway based on variant residual model and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2947-2951. |
[15] | Shuai FU, Xiaoying GUO, Ruyi BAI, Tao YAN, Bin CHEN. Age estimation method combining improved CloFormer model and ordinal regression [J]. Journal of Computer Applications, 2024, 44(8): 2372-2380. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||