Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (1): 214-222.DOI: 10.11772/j.issn.1001-9081.2024010045

• Multimedia computing and computer simulation • Previous Articles     Next Articles

Point cloud registration method based on coordinate geometric sampling

Jietao LIANG1, Bing LUO1, Lanhui FU1, Qingling CHANG1, Nannan LI2, Ningbo YI3, Qi FENG4, Xin HE4, Fuqin DENG1()   

  1. 1.School of Electronics and Information Engineering,Wuyi University,Jiangmen Guangdong 529020,China
    2.Faculty of Innovative Engineering,Macau University of Science and Technology,Macau 999078,China
    3.College of Textile Science and Engineering,Wuyi University,Jiangmen Guangdong 529020,China
    4.School of Applied Physics and Materials,Wuyi University,Jiangmen Guangdong 529020,China
  • Received:2024-01-17 Revised:2024-04-15 Accepted:2024-04-15 Online:2024-05-09 Published:2025-01-10
  • Contact: Fuqin DENG
  • About author:LIANG Jietao, born in 1999, M. S. candidate. His research interests include point cloud registration.
    LUO Bing, born in 1966, Ph. D., professor. His research interests include digital image processing and application, artificial intelligence.
    FU Lanhui, born in 1987, Ph. D., lecturer. Her research interests include machine learning, image information processing.
    CHANG Qingling, born in 1984, Ph. D., associate professor. Her research interests include artificial intelligence, natural language processing, knowledge graph, computer vision.
    LI Nannan, born in 1982, Ph. D., assistant professor. His research interests include computer vision.
    YI Ningbo, born in 1988, Ph. D., associate professor. His research interests include advanced semiconductor materials (graphene, perovskite).
    FENG Qi, born in 1990, Ph. D., lecturer. His research interests include electrochemical energy system.
    HE Xin, born in 1981, Ph. D., professor. Her research interests include flexible transparent electrode and its application in photoelectric devices.
  • Supported by:
    National Natural Science Foundation of China(62073274);Jiangmen Science and Technology Project(2020030103000008537);Wuyi University-Hong Kong-Macau Joint Funding Scheme(2022WGALH17);Exploratory Research Project of Shenzhen Institute of Artificial Intelligence and Robotics for Society(AC01202101103)

基于坐标几何采样的点云配准方法

梁杰涛1, 罗兵1, 付兰慧1, 常青玲1, 李楠楠2, 易宁波3, 冯其4, 何鑫4, 邓辅秦1()   

  1. 1.五邑大学 电子与信息工程学院,广东 江门 529020
    2.澳门科技大学 创新工程学院,澳门 999078
    3.五邑大学 纺织科学与工程学院,广东 江门 529020
    4.五邑大学 应用物理与材料学院,广东 江门 529020
  • 通讯作者: 邓辅秦
  • 作者简介:梁杰涛(1999—),男,广东江门人,硕士研究生,主要研究方向:点云配准;
    罗兵(1966—),男,湖北荆州人,教授,博士,主要研究方向:数字图像处理及应用、人工智能;
    付兰慧(1987—),女,河南新乡人,讲师,博士,主要研究方向:机器学习、图像信息处理;
    常青玲(1984—),女,河南许昌人,副教授,博士,主要研究方向:人工智能、自然语言处理、知识图谱、计算机视觉;
    李楠楠(1982—),男,安徽阜阳人,助理教授,博士,主要研究方向:机器视觉;
    易宁波(1988—),男,四川泸州人,副教授,博士,主要研究方向:先进半导体材料(石墨烯、钙钛矿);
    冯其(1990—),男,湖南湘潭人,讲师,博士,主要研究方向:电化学能源系统;
    何鑫(1981—),女,湖南衡阳人,教授,博士,主要研究方向:柔性透明电极及其在光电器件中的应用;
  • 基金资助:
    国家自然科学基金资助项目(62073274);江门科技计划项目(2020030103000008537);五邑大学港澳联合基金资助项目(2022WGALH17);深圳市人工智能与机器人研究院探索性研究项目(AC01202101103)

Abstract:

To improve accuracy, robustness, and generalization of point cloud registration and address the problem of the Iterative Closest Point (ICP) algorithm easily falling into local optimal solution, a point cloud registration method of coordinate Geometric Sampling based on Deep Closest Point (GSDCP) was proposed. Firstly, the central point curvature was estimated using coordinates of surrounding points of each point, and points that preserved geometric features of the point cloud were selected through curvature sizes, so as to realize downsampling of the point cloud. Secondly, a Dynamic Graph Convolutional Neural Network (DGCNN) was employed to coordinate with the downsampled point cloud to learn point cloud features that incorporated local geometry information, and contextual information was captured using a Transformer, and soft Pointers facilitate approximate combination and matching between two feature embedders. Finally, a differentiable Single Value Decomposition (SVD) layer was utilized to estimate the final rigid transformation. Point cloud registration experimental results on ModelNet40 dataset show that compared with ICP, Globally optimal ICP (Go-ICP), PointNetLK, Fast Global Registration (FGR), ADGCNNLK (Attention Dynamic Graph Convolutional Neural Network Lucas-Kanade), Deep Closest Point (DCP), and Multi-Features Guidance Network (MFGNet), GSDCP achieves all the best registration accuracy and robustness in scenarios with or without noise, as well as when the point cloud category is invisible. In noise-free scenario, GSDCP reduces rotational Mean Square Error (MSE) by 31.3% and translational MSE by 58.3% compared to MFGNet. In noisy scenario, GSDCP reduces rotational MSE by 33.9% and translational MSE by 73.4% compared to MFGNet. When the point cloud category is invisible, GSDCP reduces rotational MSE by 57.7% and translational MSE by 77.9% compared to MFGNet. Additionally, when dealing with incomplete point cloud data (including random occlusion and fragmentary point cloud), GSDCP exhibits reductions of 35.1% in rotational MSE and 39.8% in translational MSE compared to MFGNet when point cloud integrity is below 75%.

Key words: point cloud registration, deep learning, geometric sampling, feature extraction, Transformer

摘要:

为了提高点云配准的精度、鲁棒性和泛化性,解决迭代最近点(ICP)算法容易陷入局部最优解的问题,提出一种基于坐标几何采样的深度最近点(GSDCP)的点云配准方法。首先,基于每个点的周围点的坐标估计中心点曲率,并通过曲率大小筛选出能保留点云几何特征的点,从而完成点云下采样;然后,使用动态图卷积神经网络(DGCNN)配合下采样点云学习融入局部几何信息的点云特征,并通过Transformer捕获两个特征嵌入之间的上下文信息、使用软指针近似组合匹配;最后,利用一个可微的奇异值分解(SVD)层估计最终的刚性变换。在数据集ModelNet40上进行的点云配准实验结果表明,与ICP、Go-ICP (Globally optimal ICP)、PointNetLK、快速全局配准(FGR)、ADGCNNLK (Attention Dynamic Graph Convolutional Neural Network Lucas-Kanade)、深度最近点(DCP)和多特征引导网络(MFGNet)相比,在无噪声、有噪声和看不见点云类别的情况下GSDCP的配准精度和鲁棒性都最好;其中在无噪声的情况下,与MFGNet相比,GSDCP的旋转均方误差(MSE)降低了31.3%,平移MSE降低了58.3%;在有噪声的情况下, GSDCP的旋转MSE降低了33.9%,平移MSE降低了73.4%;在看不见点云类别的情况下, GSDCP的旋转MSE降低了57.7%,平移MSE降低了77.9%。除此之外,对不完整点云数据(包括随机遮挡和点云残缺),在点云完整度为75%以下时, GSDCP的旋转MSE降低了35.1%,平移MSE降低了39.8%。

关键词: 点云配准, 深度学习, 几何采样, 特征提取, Transformer

CLC Number: