Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (8): 2372-2380.DOI: 10.11772/j.issn.1001-9081.2023081199
• Artificial intelligence • Previous Articles Next Articles
Shuai FU1,2, Xiaoying GUO1,3(), Ruyi BAI3, Tao YAN1,2, Bin CHEN4,5
Received:
2023-09-06
Revised:
2023-10-20
Accepted:
2023-11-03
Online:
2024-08-22
Published:
2024-08-10
Contact:
Xiaoying GUO
About author:
FU Shuai , born in 1999, M. S. candidate. His research interestsinclude image ordered evaluation.Supported by:
付帅1,2, 郭小英1,3(), 白茹意3, 闫涛1,2, 陈斌4,5
通讯作者:
郭小英
作者简介:
付帅(1999—),男,山西吕梁人,硕士研究生,主要研究方向:图像有序评估基金资助:
CLC Number:
Shuai FU, Xiaoying GUO, Ruyi BAI, Tao YAN, Bin CHEN. Age estimation method combining improved CloFormer model and ordinal regression[J]. Journal of Computer Applications, 2024, 44(8): 2372-2380.
付帅, 郭小英, 白茹意, 闫涛, 陈斌. 改进的CloFormer模型与有序回归相结合的年龄评估方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2372-2380.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023081199
方法 | CACD | AFAD | UTKFace | |||
---|---|---|---|---|---|---|
MAE | RMSE | MAE | RMSE | MAE | RMSE | |
DWconv(无OR) | 6.02 | 8.54 | 3.86 | 5.20 | 6.54 | 11.23 |
DSC(无OR) | 5.68 | 8.14 | 3.73 | 5.37 | 6.32 | 10.24 |
DWconv+OR | 5.53 | 7.78 | 3.77 | 5.10 | 5.85 | 9.13 |
DSC+OR | 5.18 | 7.36 | 3.58 | 4.62 | 5.34 | 8.28 |
Tab. 1 Ablation experiments results
方法 | CACD | AFAD | UTKFace | |||
---|---|---|---|---|---|---|
MAE | RMSE | MAE | RMSE | MAE | RMSE | |
DWconv(无OR) | 6.02 | 8.54 | 3.86 | 5.20 | 6.54 | 11.23 |
DSC(无OR) | 5.68 | 8.14 | 3.73 | 5.37 | 6.32 | 10.24 |
DWconv+OR | 5.53 | 7.78 | 3.77 | 5.10 | 5.85 | 9.13 |
DSC+OR | 5.18 | 7.36 | 3.58 | 4.62 | 5.34 | 8.28 |
方法 | CACD | AFAD | UTKFace | |||
---|---|---|---|---|---|---|
MAE | RMSE | MAE | RMSE | MAE | RMSE | |
CE-CNN[ | 5.74 | 8.20 | 3.58 | 5.01 | 6.47 | 10.43 |
OR-CNN[ | 5.36 | 7.61 | 3.56 | 4.80 | 5.74 | 9.25 |
CORAL-CNN[ | 5.25 | 7.41 | 3.42 | 4.65 | 5.64 | 8.81 |
ViT-B-16[ | 6.22 | — | 4.04 | — | 6.88 | — |
本文方法 | 5.18 | 7.36 | 3.54 | 4.62 | 5.34 | 8.28 |
Tab. 2 Performance comparison of proposed method and other methods on test sets of CACD, AFAD and UTKFace datasets
方法 | CACD | AFAD | UTKFace | |||
---|---|---|---|---|---|---|
MAE | RMSE | MAE | RMSE | MAE | RMSE | |
CE-CNN[ | 5.74 | 8.20 | 3.58 | 5.01 | 6.47 | 10.43 |
OR-CNN[ | 5.36 | 7.61 | 3.56 | 4.80 | 5.74 | 9.25 |
CORAL-CNN[ | 5.25 | 7.41 | 3.42 | 4.65 | 5.64 | 8.81 |
ViT-B-16[ | 6.22 | — | 4.04 | — | 6.88 | — |
本文方法 | 5.18 | 7.36 | 3.54 | 4.62 | 5.34 | 8.28 |
方法 | 训练集 | 验证集 | 测试集 | |||
---|---|---|---|---|---|---|
MAE | RMSE | MAE | RMSE | MAE | RMSE | |
LDLFs[ | 4.73 | — | 6.77 | — | — | — |
DRFs[ | 4.64 | — | 5.77 | — | — | — |
CE-CNN[ | 4.36 | 6.63 | 5.67 | 8.08 | 5.74 | 8.20 |
OR-CNN[ | 1.64 | 2.56 | 5.28 | 7.56 | 5.36 | 7.61 |
FP-Age[ | 4.33 | — | 4.95 | — | — | — |
CORAL-CNN[ | 1.50 | 2.20 | 5.17 | 7.29 | 5.25 | 7.41 |
MWR[ | 4.41 | — | 5.68 | — | — | — |
ViT-B-16[ | — | — | — | — | 6.22 | — |
本文方法 | 1.47 | 2.23 | 5.12 | 7.30 | 5.18 | 7.36 |
Tab. 3 Performance comparison of proposed method and other methods on CACD dataset
方法 | 训练集 | 验证集 | 测试集 | |||
---|---|---|---|---|---|---|
MAE | RMSE | MAE | RMSE | MAE | RMSE | |
LDLFs[ | 4.73 | — | 6.77 | — | — | — |
DRFs[ | 4.64 | — | 5.77 | — | — | — |
CE-CNN[ | 4.36 | 6.63 | 5.67 | 8.08 | 5.74 | 8.20 |
OR-CNN[ | 1.64 | 2.56 | 5.28 | 7.56 | 5.36 | 7.61 |
FP-Age[ | 4.33 | — | 4.95 | — | — | — |
CORAL-CNN[ | 1.50 | 2.20 | 5.17 | 7.29 | 5.25 | 7.41 |
MWR[ | 4.41 | — | 5.68 | — | — | — |
ViT-B-16[ | — | — | — | — | 6.22 | — |
本文方法 | 1.47 | 2.23 | 5.12 | 7.30 | 5.18 | 7.36 |
方法 | 训练集 | 验证集 | 测试集 | |||
---|---|---|---|---|---|---|
MAE | RMSE | MAE | RMSE | MAE | RMSE | |
CE-CNN[ | 2.62 | 3.90 | 3.58 | 5.01 | 3.58 | 5.01 |
OR-CNN[ | 2.90 | 3.92 | 4.71 | 5.95 | 3.56 | 4.80 |
CORAL-CNN[ | 1.13 | 1.58 | 5.43 | 6.74 | 3.48 | 4.65 |
ViT-B-16[ | — | — | — | — | 4.04 | — |
本文方法 | 1.25 | 1.73 | 4.92 | 6.37 | 3.54 | 4.62 |
Tab. 4 Performance comparison of proposed method and other methods on AFAD dataset
方法 | 训练集 | 验证集 | 测试集 | |||
---|---|---|---|---|---|---|
MAE | RMSE | MAE | RMSE | MAE | RMSE | |
CE-CNN[ | 2.62 | 3.90 | 3.58 | 5.01 | 3.58 | 5.01 |
OR-CNN[ | 2.90 | 3.92 | 4.71 | 5.95 | 3.56 | 4.80 |
CORAL-CNN[ | 1.13 | 1.58 | 5.43 | 6.74 | 3.48 | 4.65 |
ViT-B-16[ | — | — | — | — | 4.04 | — |
本文方法 | 1.25 | 1.73 | 4.92 | 6.37 | 3.54 | 4.62 |
方法 | 训练集 | 验证集 | 测试集 | |||
---|---|---|---|---|---|---|
MAE | RMSE | MAE | RMSE | MAE | RMSE | |
CE-CNN[ | 3.50 | 6.22 | 6.45 | 10.40 | 6.47 | 10.43 |
OR-CNN[ | 2.90 | 4.96 | 4.71 | 9.97 | 5.74 | 9.25 |
CORAL-CNN[ | 1.22 | 1.78 | 5.57 | 8.64 | 5.64 | 8.81 |
ViT-B-16[ | — | — | — | — | 6.88 | — |
本文方法 | 0.85 | 1.41 | 5.37 | 8.33 | 5.34 | 8.28 |
Tab. 5 Performance comparison of proposed method and other methods on UTKFace dataset
方法 | 训练集 | 验证集 | 测试集 | |||
---|---|---|---|---|---|---|
MAE | RMSE | MAE | RMSE | MAE | RMSE | |
CE-CNN[ | 3.50 | 6.22 | 6.45 | 10.40 | 6.47 | 10.43 |
OR-CNN[ | 2.90 | 4.96 | 4.71 | 9.97 | 5.74 | 9.25 |
CORAL-CNN[ | 1.22 | 1.78 | 5.57 | 8.64 | 5.64 | 8.81 |
ViT-B-16[ | — | — | — | — | 6.88 | — |
本文方法 | 0.85 | 1.41 | 5.37 | 8.33 | 5.34 | 8.28 |
1 | HAN H, OTTO C, JAIN A K. Age estimation from face images: human vs. machine performance[C]// Proceedings of the 2013 International Conference on Biometrics. Piscataway: IEEE, 2013: 1-8. |
2 | ALKASS K, BUCHHOLZ B A, OHTANI S, et al. Age estimation in forensic sciences: application of combined aspartic acid racemization and radiocarbon analysis[J]. Molecular and Cellular Proteomics, 2010, 9(5):1022-1030. |
3 | ROTHE R, TIMOFTE R, VAN GOOL L. Deep expectation of real and apparent age from a single image without facial landmarks[J]. International Journal of Computer Vision, 2018, 126(2/3/4): 144-157. |
4 | ZHANG K, LIU N, YUAN X, et al. Fine-grained age estimation in the wild with attention LSTM networks[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(9): 3140-3152. |
5 | LI W, LU J, FENG J, et al. BridgeNet: a continuity-aware probabilistic network for age estimation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1145-1154. |
6 | SHIN N H, LEE S H, KIM C S. Moving window regression: a novel approach to ordinal regression[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 18739-18748. |
7 | NIU Z, ZHOU M, WANG L, et al. Ordinal regression with multiple output CNN for age estimation[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 4920-4928. |
8 | CHEN S, ZHANG C, DONG M, et al. Using ranking-CNN for age estimation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 742-751. |
9 | PAN H, HAN H, SHAN S, et al. Mean-variance loss for deep age estimation from a face[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 5285-5294. |
10 | WEN X, LI B, GUO H, et al. Adaptive variance based label distribution learning for facial age estimation[C]// Proceedings of the 16th European Conference on Computer Vision, LNCS 12368. Cham: Springer, 2020: 379-395. |
11 | 何建辉,胡春龙,束鑫. 基于多峰标签分布学习的多任务年龄估计方法[J]. 计算机应用, 2023, 43(5): 1578-1583. |
HE J H, HU C L, SHU X. Multi-task age estimation method based on multi-peak label distribution learning[J]. Journal of Computer Applications, 2023, 43(5): 1578-1583. | |
12 | SHEN W, GUO Y, WANG Y, et al. Deep regression forests for age estimation[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2304-2313. |
13 | SHEN W, ZHAO K, GUO Y, et al. Label distribution learning forests[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 834-843. |
14 | YANG T Y, HUANG Y H, LIN Y Y, et al. SSR-Net: a compact soft stagewise regression network for age estimation[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2018: 1078-1084. |
15 | 李丽莹,王阳,马军山. 基于深度学习的人脸表观年龄估计[J]. 软件导刊, 2021, 20(6): 54-58. |
LI L Y, WANG Y, MA J S. Apparent age estimation based on deep learning[J]. Software Guide, 2021, 20(6): 54-58. | |
16 | 李珏,卢鹤. 基于深度学习的人脸图像年龄估计[J]. 现代信息科技, 2019, 3(18): 40-42. |
LI J, LU H. Age estimation of face images based on deep learning[J]. Modern Information Technology, 2019, 3(18): 40-42. | |
17 | ROTHE R, TIMOFTE R, VAN GOOL L. DEX: deep expectation of apparent age from a single image[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop. Piscataway: IEEE, 2015: 252-257. |
18 | FAN Q, HUANG H, GUAN J, et al. Rethinking local perception in lightweight vision transformer[EB/OL]. (2023-06-01) [2023-09-05].. |
19 | SIFRE L, MALLAT S. Rigid-motion scattering for texture classification[EB/OL]. (2014-03-07) [2023-09-05].. |
20 | HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17) [2023-09-05].. |
21 | CAO W, MIRJALILI V, RASCHKA S. Rank consistent ordinal regression for neural networks with application to age estimation[J]. Pattern Recognition Letters, 2020, 140: 325-331. |
22 | HAN K, WANG Y, CHEN H, et al. A survey on vision transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 87-110. |
23 | ZHU Z, HUANG G, DENG J, et al. WebFace260M: a benchmark unveiling the power of million-scale deep face recognition[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10487-10497. |
24 | XUE F, WANG Q, GUO G. TransFER: learning relation-aware facial expression representations with transformers[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 3581-3590. |
25 | HE S, GRANT P E, OU Y M. Global-local transformer for brain age estimation[J]. IEEE Transactions on Medical Imaging, 2022, 41(1): 213-224. |
26 | QIN L, WANG M, DENG C, et al. SwinFace: a multi-task transformer for face recognition, expression recognition, age estimation and attribute estimation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(4): 2223-2234. |
27 | GUTIÉRREZ P A, PÉREZ-ORTIZ M, SÁNCHEZ-MONEDERO J, et al. Ordinal regression methods: survey and experimental study[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(1): 127-146. |
28 | VARGAS V M, GUTIÉRREZ P A, HERVÁS C. Deep ordinal classification based on the proportional odds model[C]// Proceedings of the 2019 International Work-Conference on the Interplay Between Natural and Artificial Computation, LNCS 11487. Cham: Springer, 2019: 441-451. |
29 | LEE J, LEE I, KANG J. Self-attention graph pooling[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019:3734-3743. |
30 | CHEN B C, CHEN C S, HSU W H. Cross-age reference coding for age-invariant face recognition and retrieval[C]// Proceedings of the 13th European Conference on Computer Vision, LNCS 8694. Cham: Springer, 2014: 768-783. |
31 | ZHANG Z, SONG Y, QI H. Age progression/regression by conditional adversarial autoencoder[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 4352-4360. |
32 | ZHANG K, ZHANG Z, LI Z, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters, 2016, 23(10): 1499-1503. |
33 | TOUVRON H, CORD M, DOUZE M, et al. Training data-efficient image transformers & distillation through attention[C]// Proceedings of the 38th International Conference on Machine Learning. New York: JMLR.org, 2021: 10347-10357. |
34 | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30) [2023-09-05].. |
35 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. (2017-01-30) [2023-09-05]. . |
36 | LIN Y, SHEN J, WANG Y, et al. FP-Age: leveraging face parsing attention for facial age estimation in the wild[J]. IEEE Transactions on Image Processing, 2022(Early Access): 1. |
[1] | Xin YANG, Xueni CHEN, Chunjiang WU, Shijie ZHOU. Short-term traffic flow prediction of urban highway based on variant residual model and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2947-2951. |
[2] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[3] | Chun SUN, Chunlong HU, Shucheng HUANG. Consistency preserving age estimation method by ensemble ranking [J]. Journal of Computer Applications, 2024, 44(8): 2381-2386. |
[4] | Tong CHEN, Fengyu YANG, Yu XIONG, Hong YAN, Fuxing QIU. Construction method of voiceprint library based on multi-scale frequency-channel attention fusion [J]. Journal of Computer Applications, 2024, 44(8): 2407-2413. |
[5] | Wudan LONG, Bo PENG, Jie HU, Ying SHEN, Danni DING. Road damage detection algorithm based on enhanced feature extraction [J]. Journal of Computer Applications, 2024, 44(7): 2264-2270. |
[6] | Ruihua LIU, Zihe HAO, Yangyang ZOU. Gait recognition algorithm based on multi-layer refined feature fusion [J]. Journal of Computer Applications, 2024, 44(7): 2250-2257. |
[7] | Sailong SHI, Zhiwen FANG. Gaze estimation model based on multi-scale aggregation and shared attention [J]. Journal of Computer Applications, 2024, 44(7): 2047-2054. |
[8] | Ziwen SUN, Lizhi QIAN, Chuandong YANG, Yibo GAO, Qingyang LU, Guanglin YUAN. Survey of visual object tracking methods based on Transformer [J]. Journal of Computer Applications, 2024, 44(5): 1644-1654. |
[9] | Zhihao WU, Ziqiu CHI, Ting XIAO, Zhe WANG. Meta-learning adaption for few-shot text-to-speech [J]. Journal of Computer Applications, 2024, 44(5): 1629-1635. |
[10] | Chenhui CUI, Suzhen LIN, Dawei LI, Xiaofei LU, Jie WU. Infrared dim small target tracking method based on Siamese network and Transformer [J]. Journal of Computer Applications, 2024, 44(2): 563-571. |
[11] | Wenjie YAN, Dongyue DANG. Broad quantum state tomography model based on adaptive feature extraction [J]. Journal of Computer Applications, 2024, 44(12): 3861-3866. |
[12] | Yudong PANG, Zhixing LI, Weijie LIU, Tianhao LI, Ningning WANG. Small target detection model in overlooking scenes on tower cranes based on improved real-time detection Transformer [J]. Journal of Computer Applications, 2024, 44(12): 3922-3929. |
[13] | Yiyang FAN, Yang ZHANG, Shang ZENG, Yu ZENG, Maoli FU. Multivariate long-term series forecasting model based on decomposition and frequency domain feature extraction [J]. Journal of Computer Applications, 2024, 44(11): 3442-3448. |
[14] | Pei ZHAO, Yan QIAO, Rongyao HU, Xinyu YUAN, Minyue LI, Benchu ZHANG. Multivariate time series anomaly detection based on multi-domain feature extraction [J]. Journal of Computer Applications, 2024, 44(11): 3419-3426. |
[15] | Tao LIU, Shihong JU, Yimeng GAO. Small object detection algorithm from drone perspective based on improved YOLOv8n [J]. Journal of Computer Applications, 2024, 44(11): 3603-3609. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||