Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (8): 2381-2386.DOI: 10.11772/j.issn.1001-9081.2023081173
• Artificial intelligence • Previous Articles Next Articles
Chun SUN, Chunlong HU(), Shucheng HUANG
Received:
2023-09-01
Revised:
2023-10-19
Accepted:
2023-11-03
Online:
2024-08-22
Published:
2024-08-10
Contact:
Chunlong HU
About author:
SUN Chun , born in 1999, M. S. candidate. His research interestsinclude computer vision, machine learning.Supported by:
通讯作者:
胡春龙
作者简介:
孙淳(1999—),男,江苏宿迁人,硕士研究生,CCF会员,主要研究方向:计算机视觉、机器学习基金资助:
CLC Number:
Chun SUN, Chunlong HU, Shucheng HUANG. Consistency preserving age estimation method by ensemble ranking[J]. Journal of Computer Applications, 2024, 44(8): 2381-2386.
孙淳, 胡春龙, 黄树成. 一致性保留的集成排序年龄估计方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2381-2386.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023081173
随机种子数 | MAE | ||
---|---|---|---|
1 | 2.17 | 80.0 | 92.7 |
2 | 2.18 | 79.5 | 92.8 |
3 | 2.18 | 79.7 | 92.6 |
4 | 2.18 | 79.4 | 92.5 |
5 | 2.18 | 79.2 | 92.5 |
Tab. 1 MAE, CS(3), CS(5) results of MORPH Ⅱ dataset by 80-20 random partition method
随机种子数 | MAE | ||
---|---|---|---|
1 | 2.17 | 80.0 | 92.7 |
2 | 2.18 | 79.5 | 92.8 |
3 | 2.18 | 79.7 | 92.6 |
4 | 2.18 | 79.4 | 92.5 |
5 | 2.18 | 79.2 | 92.5 |
方法 | MORPH Ⅱ | CACD | AFAD | FG-NET |
---|---|---|---|---|
OR-CNN[ | 3.27 | 5.52 | 3.68 | — |
SSR-Net [ | 3.16 | — | — | — |
Ranking-CNN[ | 2.96 | — | — | — |
DOEL[ | 2.81 | — | — | 3.44 |
Group-n[ | 2.52 | 4.68 | — | 2.96 |
DEX[ | 2.68 | 4.79 | — | 4.30 |
ALD-Net[ | 2.65 | 4.62 | — | 3.25 |
CORAL[ | 2.64 | 5.39 | 3.49 | — |
FCRN[ | 2.72 | — | 3.28 | — |
DCDL+MV[ | 2.45 | — | 2.28 | — |
MV[ | — | — | 4.10 | |
本文方法 | 2.18 | 3.04 |
Tab. 2 MAE results obtained by RS dataset partitioning method on different datasets
方法 | MORPH Ⅱ | CACD | AFAD | FG-NET |
---|---|---|---|---|
OR-CNN[ | 3.27 | 5.52 | 3.68 | — |
SSR-Net [ | 3.16 | — | — | — |
Ranking-CNN[ | 2.96 | — | — | — |
DOEL[ | 2.81 | — | — | 3.44 |
Group-n[ | 2.52 | 4.68 | — | 2.96 |
DEX[ | 2.68 | 4.79 | — | 4.30 |
ALD-Net[ | 2.65 | 4.62 | — | 3.25 |
CORAL[ | 2.64 | 5.39 | 3.49 | — |
FCRN[ | 2.72 | — | 3.28 | — |
DCDL+MV[ | 2.45 | — | 2.28 | — |
MV[ | — | — | 4.10 | |
本文方法 | 2.18 | 3.04 |
方法 | MAE | |
---|---|---|
CORAL[ | 2.64 | 0.000 |
OR-CNN[ | 3.19 | 0.240 |
本文方法 | 2.18 | 0.083 |
Tab. 3 Comparison of inconsistent ranking measures between proposed method and similar methods on MORPH Ⅱ dataset
方法 | MAE | |
---|---|---|
CORAL[ | 2.64 | 0.000 |
OR-CNN[ | 3.19 | 0.240 |
本文方法 | 2.18 | 0.083 |
1 | 曹猛,田青,马廷淮,等.人类面部属性估计研究:综述[J]. 软件学报, 2019, 30(7):2188-2207. |
CAO M, TIAN Q, MA T H, et al. Human facial attributes estimation: a survey [J]. Journal of Software, 2019, 30(7): 2188-2207. | |
2 | GUNAY A, NABIYEV V V. Automatic age classification with LBP[C]// Proceedings of the 2008 23rd Intnational Symposium on Computer and Information Sciences. Piscataway: IEEE, 2008:1-4. |
3 | GUO G, MU G W, FU Y, et al. Human age estimation using bio-inspired features[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 112-119. |
4 | GUO G, FU Y, DYER C R, et al. Image-based human age estimation by manifold learning and locally adjusted robust regression[J]. IEEE Transactions on Image Processing, 2008, 17(7): 1178-1788. |
5 | YANG P, ZHONG L, METAXAS D. Ranking model for facial age estimation[C]// Proceedings of the 2010 20th International Conference on Pattern Recognition. Piscataway: IEEE, 2010: 3404-3407. |
6 | CHANG K-Y, CHEN C-S, Y-P HUNG. Ordinal hyperplanes ranker with cost sensitivities for age estimation[C]// Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2011: 585-592. |
7 | CAO D, LEI Z, ZHANG Z, et al. Human age estimation using ranking SVM[C]// Proceedings of the 7th Chinese Conference on Biometric Recognition. Berlin: Springer, 2012: 324-331. |
8 | LI C, LIU Q, LIU J, et al. Learning ordinal discriminative features for age estimation[C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 2570-2577. |
9 | 何建辉,胡春龙,束鑫.基于多峰标签分布学习的多任务年龄估计方法[J].计算机应用, 2023, 43(5): 1578-1583. |
HE J H, HU C L, SHU X. Multi-task age estimation method based on multi-peak label distribution learning [J]. Journal of Computer Applications, 2023, 43(5): 1578-1583. | |
10 | 李睿钰,祝继华,刘新媛. 考虑标记间协作的标记分布学习[J]. 软件学报,2022,33(2):539-554. |
LI R Y, ZHU J H, LIU X Y. Label distribution learning with collaboration among labels[J]. Journal of Software, 2022, 33(2): 539-554. | |
11 | HU C, GAO J, CHEN J, et al. Fine-grained age estimation with multi-attention network[J]. IEEE Access, 2020, 8: 196013-196023. |
12 | ROTHE R, TIMOFTE R, VAN GOOL L. DEX: deep expectation of apparent age from a single image[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop. Piscataway: IEEE, 2015: 252-257. |
13 | LIU X, LI S, KAN M, et al. AgeNet: deeply learned regressor and classifier for robust apparent age estimation[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop. Piscataway: IEEE, 2015: 258-266. |
14 | MALLI R C, AYGÜN M, EKENEL H K. Apparent age estimation using ensemble of deep learning models[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2016: 714-721. |
15 | YANG T-Y, HUANG Y-H, LIN Y-Y, et al. SSR-Net: a compact soft stagewise regression network for age estimation[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2018: 1078-1084. |
16 | XIE J-C, C-M PUN. Chronological age estimation under the guidance of age-related facial attributes [J]. IEEE Transactions on Information Forensics and Security, 2019, 14(9): 2500-2511. |
17 | PAN H, HAN H, SHAN S, et al. Mean-variance loss for deep age estimation from a face[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 5285-5294. |
18 | LIU N, SU Z, CHAI Y, et al. Feedback neural network for constrained biobjective convex optimization [J]. Neurocomputing, 2022, 514: 127-136. |
19 | LIU H, LU J, FENG J,et al. Ordinal deep feature learning for facial age estimation[C]// Proceedings of the 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition. Piscataway: IEEE, 2017: 157-164. |
20 | LI K, XING J, HU W, et al. D2C: deep cumulatively and comparatively learning for human age estimation[J]. Pattern Recognition, 2017, 66: 95-105. |
21 | SUN H, PAN H, HAN H, et al. Deep conditional distribution learning for age estimation[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 4679-4690. |
22 | HE J, HU C, WANG L. Facial age estimation based on asymmetrical label distribution[J]. Multimedia Systems,2023,29: 753-762. |
23 | GAO B-B, XING C, XIE C-W, et al. Deep label distribution learning with label ambiguity[J]. IEEE Transactions on Image Processing, 2017, 26(6): 2825-2838. |
24 | CHEN S, ZHANG C, DONG M, et al. Using ranking-CNN for age estimation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 742-751. |
25 | NIU Z, ZHOU M, WANG L, et al. Ordinal regression with multiple output CNN for age estimation[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 4920-4928. |
26 | CAO W, MIRJALILI V, RASCHKA S. Rank consistent ordinal regression for neural networks with application to age estimation[J]. Pattern Recognition Letters, 2020, 140: 325-331. |
27 | RICANEK K, TESAFAYE T. MORPH: a longitudinal image database of normal adult age-progression[C]// Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition. Piscataway: IEEE, 2006: 341-345. |
28 | PANIS G, LANITIS A, TSAPATSOULIS N, et al. Overview of research on facial ageing using the fg-net ageing database [J]. IET Biometrics,2 016, 5(2): 37-46. |
29 | CHEN B-C, CHEN C-S, HSU W H. Face recognition and retrieval using cross-age reference coding with cross-age celebrity dataset [J]. IEEE Transactions on Multimedia, 2015, 17(6): 804-815. |
30 | XIE J-C, C-M PUN. Deep and ordinal ensemble learning for human age estimation from facial images [J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 2361-2374. |
31 | TAN Z, WAN J, LEI Z, et al. Efficient group-n encoding and decoding for facial age estimation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(11): 2610-2623. |
32 | CHEN G, PENG J, WANG L, et al. Feature constraint reinforcement based age estimation[J]. Multimedia Tools and Applications, 2023, 82: 17033-17054. |
[1] | Shuai FU, Xiaoying GUO, Ruyi BAI, Tao YAN, Bin CHEN. Age estimation method combining improved CloFormer model and ordinal regression [J]. Journal of Computer Applications, 2024, 44(8): 2372-2380. |
[2] | Yuanlong WANG, Wenbo HU, Hu ZHANG. Knowledge-guided visual relationship detection model [J]. Journal of Computer Applications, 2024, 44(3): 683-689. |
[3] | Shengmin ZHENG, Xiaodong FU. Incomplete ordinal preference prediction using mixture of Plackett-Luce models [J]. Journal of Computer Applications, 2024, 44(10): 3105-3113. |
[4] | Shijie PENG, Hongmei CHEN, Lizhen WANG, Qing XIAO. Hybrid point-of-interest recommendation model based on geographic preference ranking [J]. Journal of Computer Applications, 2023, 43(8): 2448-2455. |
[5] | Jianhui HE, Chunlong HU, Xin SHU. Multi-task age estimation method based on multi-peak label distribution learning [J]. Journal of Computer Applications, 2023, 43(5): 1578-1583. |
[6] | Canghong JIN, Yuhua SHAO, Qinfang HE. Long-tail recommendation model based on adaptive group reranking [J]. Journal of Computer Applications, 2023, 43(4): 1122-1128. |
[7] | Wang TAN, Yi LI. Synthesis of loop bound functions for loop programs [J]. Journal of Computer Applications, 2022, 42(2): 565-573. |
[8] | Dawei LI, Zhiyong ZENG. Cross-modal person re-identification model based on dynamic dual-attention mechanism [J]. Journal of Computer Applications, 2022, 42(10): 3200-3208. |
[9] | Gai LI, Lei LI, Jiaqiang ZHANG. Social collaborative ranking recommendation algorithm by exploiting both explicit and implicit feedback [J]. Journal of Computer Applications, 2021, 41(12): 3515-3520. |
[10] | LI Quan, XU Xinhua, LIU Xinghong, CHEN Qi. Next location recommendation based on spatiotemporal-aware GRU and attention [J]. Journal of Computer Applications, 2020, 40(3): 677-682. |
[11] | YUAN Yue, LI Yi. Polynomial ranking function detection method based on Dixon resultant and successive difference substitution [J]. Journal of Computer Applications, 2019, 39(7): 2065-2073. |
[12] | QI Ziliang, QU Hanbing, ZHAO Chuanhu, DONG Liang, LI Bozhao, WANG changsheng. Person re-identification based on Siamese network and bidirectional max margin ranking loss [J]. Journal of Computer Applications, 2019, 39(4): 977-983. |
[13] | LIU Bao, DONG Minggang, JING Chao. Multi-objective differential evolution algorithm with improved ranking-based mutation [J]. Journal of Computer Applications, 2018, 38(8): 2157-2163. |
[14] | CHEN Shoubing, WANG Hongyuan, JIN Cui, ZHANG Wei. Person re-identification based on siamese network and reranking [J]. Journal of Computer Applications, 2018, 38(11): 3161-3166. |
[15] | LI Wei, FU Xiaodong, LIU Li, LIU Lijun. Online service evaluation based on social choice theory [J]. Journal of Computer Applications, 2017, 37(7): 1983-1988. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||