Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (8): 2544-2550.DOI: 10.11772/j.issn.1001-9081.2023081195
• Multimedia computing and computer simulation • Previous Articles Next Articles
Cui WANG1,2, Miaolei DENG1,2(), Dexian ZHANG1,2, Lei LI1, Xiaoyan YANG1,2
Received:
2023-09-07
Revised:
2023-10-24
Accepted:
2023-11-03
Online:
2024-08-22
Published:
2024-08-10
About author:
WANG Cui,born in 1998, M. S. candidate. Her research interests include person search, computer vision.Supported by:
王翠1,2, 邓淼磊1,2(), 张德贤1,2, 李磊1, 杨晓艳1,2
作者简介:
王翠(1998—),女,河南商丘人,硕士研究生,主要研究方向:行人搜索、计算机视觉基金资助:
CLC Number:
Cui WANG, Miaolei DENG, Dexian ZHANG, Lei LI, Xiaoyan YANG. Review of end-to-end person search algorithms based on images[J]. Journal of Computer Applications, 2024, 44(8): 2544-2550.
王翠, 邓淼磊, 张德贤, 李磊, 杨晓艳. 基于图像的端到端行人搜索算法综述[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2544-2550.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023081195
类别 | 方法 | 应用场景 | 优点 | 局限性 | 代表文献 |
---|---|---|---|---|---|
特征学习 | 细化边界框,以覆盖身体整体区域,从中提取和对齐可识别特征 | 图像完整无其他影响,对全局或局部特征进行特征对齐 | 计算开销较低,有效提高模型的鲁棒性 | 容易忽略上下文信息,且分辨率较低的图片特征提取较粗糙 | APNet[ AlignPS[ |
遮挡学习 | 通过计算每个检测的遮挡注意力,区分标记的行人和背景 | 在行人部分信息被遮挡的情况下,区分行人和背景 | 可以应用到多种场合,较有现实意义 | 有效特征较难提取 | IAN[ LCGPS[ |
无监督和 弱监督学习 | 通过聚类和降维的方式,分析不带标签的数据,发现网络潜在的一些结构并训练 | 在只有边界框或只有标识注释的情况下搜索行人 | 减少对标注数据的依赖,可以在不受约束的图像中直接研究图像 | 易受背景噪声的干扰,且未标记的数据会使结果出现误差 | QEEPS[ CGPS[ |
跨模态学习 | 通过2种方式将图片分割为多个区域,结合注意力机制,将2种方法关联起来 | 通常给定一个目标行人的自然语言描述,要求从候选图库中检索该行人 | 自然语言描述相较于行人图像更易获取 | 2种模态的差异较大,直接衡量它们之间的相似性比较困难 | Ge等[ Li等[ |
Tab. 1 Comparison of mainstream person search methods
类别 | 方法 | 应用场景 | 优点 | 局限性 | 代表文献 |
---|---|---|---|---|---|
特征学习 | 细化边界框,以覆盖身体整体区域,从中提取和对齐可识别特征 | 图像完整无其他影响,对全局或局部特征进行特征对齐 | 计算开销较低,有效提高模型的鲁棒性 | 容易忽略上下文信息,且分辨率较低的图片特征提取较粗糙 | APNet[ AlignPS[ |
遮挡学习 | 通过计算每个检测的遮挡注意力,区分标记的行人和背景 | 在行人部分信息被遮挡的情况下,区分行人和背景 | 可以应用到多种场合,较有现实意义 | 有效特征较难提取 | IAN[ LCGPS[ |
无监督和 弱监督学习 | 通过聚类和降维的方式,分析不带标签的数据,发现网络潜在的一些结构并训练 | 在只有边界框或只有标识注释的情况下搜索行人 | 减少对标注数据的依赖,可以在不受约束的图像中直接研究图像 | 易受背景噪声的干扰,且未标记的数据会使结果出现误差 | QEEPS[ CGPS[ |
跨模态学习 | 通过2种方式将图片分割为多个区域,结合注意力机制,将2种方法关联起来 | 通常给定一个目标行人的自然语言描述,要求从候选图库中检索该行人 | 自然语言描述相较于行人图像更易获取 | 2种模态的差异较大,直接衡量它们之间的相似性比较困难 | Ge等[ Li等[ |
数据集 | 行人身份数 | 图片数 | 边界框数 | 发表年份 | 发表会议 |
---|---|---|---|---|---|
CUHK-SYSU | 8 432 | 18 184 | 96 143 | 2017 | CVPR |
PRW | 932 | 11 861 | 43 110 | 2017 | CVPR |
LSPS | 4 067 | 51 836 | 60 433 | 2020 | CVPR |
Tab. 2 Statistical information of person search datasets
数据集 | 行人身份数 | 图片数 | 边界框数 | 发表年份 | 发表会议 |
---|---|---|---|---|---|
CUHK-SYSU | 8 432 | 18 184 | 96 143 | 2017 | CVPR |
PRW | 932 | 11 861 | 43 110 | 2017 | CVPR |
LSPS | 4 067 | 51 836 | 60 433 | 2020 | CVPR |
算法 | 主干网 | CUHK-SYSU | PRW | ||
---|---|---|---|---|---|
mAP | Top-1 | mAP | Top-1 | ||
MGTS[ | VGG16 | 83.0 | 83.7 | 32.6 | 72.1 |
CLSA[ | ResNet50 | 87.2 | 88.5 | 38.7 | 65.0 |
IGPN[ | ResNet50 | 90.3 | 91.4 | 47.2 | 87.0 |
RDLR21] | ResNet50 | 93.0 | 94.2 | 42.9 | 70.2 |
FT-MDnet[ | ResNet50 | 93.2 | 94.5 | 52.0 | 86.0 |
TCTS[ | ResNet50 | 93.9 | 95.1 | 46.8 | 87.5 |
Tab. 3 Performance comparison of two-step methods on two most commonly used datasets
算法 | 主干网 | CUHK-SYSU | PRW | ||
---|---|---|---|---|---|
mAP | Top-1 | mAP | Top-1 | ||
MGTS[ | VGG16 | 83.0 | 83.7 | 32.6 | 72.1 |
CLSA[ | ResNet50 | 87.2 | 88.5 | 38.7 | 65.0 |
IGPN[ | ResNet50 | 90.3 | 91.4 | 47.2 | 87.0 |
RDLR21] | ResNet50 | 93.0 | 94.2 | 42.9 | 70.2 |
FT-MDnet[ | ResNet50 | 93.2 | 94.5 | 52.0 | 86.0 |
TCTS[ | ResNet50 | 93.9 | 95.1 | 46.8 | 87.5 |
算法 | 主干网 | CUHK-SYSU | PRW | ||
---|---|---|---|---|---|
mAP | Top-1 | mAP | Top-1 | ||
OIM[ | ResNet50 | 75.5 | 78.7 | 21.3 | 49.4 |
IAN[ | ResNet101 | 77.2 | 80.5 | 23.0 | 61.9 |
DAPS[ | ResNet50 | 77.6 | 79.6 | 34.7 | 80.6 |
CGPS[ | ResNet50 | 80.0 | 82.3 | 16.2 | 68.0 |
LCGPS[ | ResNet50 | 84.1 | 86.5 | 33.4 | 73.4 |
QEEPS[ | ResNet50 | 88.9 | 89.1 | 37.1 | 76.7 |
APNet[ | ResNet50 | 88.9 | 89.3 | 41.9 | 81.4 |
HOIM[ | ResNet50 | 89.7 | 90.8 | 39.8 | 80.4 |
NAE[ | ResNet50 | 91.5 | 92.4 | 43.3 | 80.9 |
SeqNet[ | ResNet50 | 93.8 | 94.6 | 46.7 | 83.4 |
AlignPS[ | ResNet50-DCN | 94.0 | 94.5 | 46.1 | 82.1 |
COAT[ | ResNet50 | 94.2 | 94.7 | 53.3 | 87.4 |
PSTR[ | PVTv2-B2 | 95.2 | 96.2 | 56.5 | 89.7 |
Tab. 4 Performance comparison of one-step methods on two most commonly used datasets
算法 | 主干网 | CUHK-SYSU | PRW | ||
---|---|---|---|---|---|
mAP | Top-1 | mAP | Top-1 | ||
OIM[ | ResNet50 | 75.5 | 78.7 | 21.3 | 49.4 |
IAN[ | ResNet101 | 77.2 | 80.5 | 23.0 | 61.9 |
DAPS[ | ResNet50 | 77.6 | 79.6 | 34.7 | 80.6 |
CGPS[ | ResNet50 | 80.0 | 82.3 | 16.2 | 68.0 |
LCGPS[ | ResNet50 | 84.1 | 86.5 | 33.4 | 73.4 |
QEEPS[ | ResNet50 | 88.9 | 89.1 | 37.1 | 76.7 |
APNet[ | ResNet50 | 88.9 | 89.3 | 41.9 | 81.4 |
HOIM[ | ResNet50 | 89.7 | 90.8 | 39.8 | 80.4 |
NAE[ | ResNet50 | 91.5 | 92.4 | 43.3 | 80.9 |
SeqNet[ | ResNet50 | 93.8 | 94.6 | 46.7 | 83.4 |
AlignPS[ | ResNet50-DCN | 94.0 | 94.5 | 46.1 | 82.1 |
COAT[ | ResNet50 | 94.2 | 94.7 | 53.3 | 87.4 |
PSTR[ | PVTv2-B2 | 95.2 | 96.2 | 56.5 | 89.7 |
1 | WANG X. Intelligent multi-camera video surveillance: a review[J]. Pattern Recognition Letters, 2013, 34(1): 3-19. |
2 | XU Y, MA B, HUANG R, et al. Person search in a scene by jointly modeling people commonness and person uniqueness[C]// Proceedings of the 22nd ACM International Conference on Multimedia. New York: ACM, 2014: 937-940. |
3 | ZHENG L, ZHANG H, SUN S, et al. Person re-identification in the wild[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE,2017: 3346-3355. |
4 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE,2014: 580-587. |
5 | FELZENSZWALB P F, GIRSHICK R B, McALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645. |
6 | DOLLÁR P, APPEL R, BELONGIE S, et al. Fast feature pyramids for object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(8): 1532-1545. |
7 | NAM W, DOLLÁR P, HAN J H. Local decorrelation for improved pedestrian detection[J]. Advances in Neural Information Processing Systems,2014, 27: 424-432. |
8 | ZHENG L, SHEN L, TIAN L,et al. Scalable person re-identification: a benchmark[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE,2015: 1116-1124. |
9 | FARENZENA M, BAZZANI L, PERINA A, et al. Person re-identification by symmetry-driven accumulation of local features[C]// Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE,2010: 2360-2367. |
10 | LIAO S, HU Y, ZHU X, et al. Person re-identification by local maximal occurrence representation and metric learning[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 2197-2206. |
11 | XIONG F, GOU M, CAMPS O, et al. Person re-identification using kernel-based metric learning methods[C]// Proceedings of the 13th European Conference on Computer Vision. Cham: Springer, 2014: 1-16. |
12 | MA B, SU Y, JURIE F. Covariance descriptor based on bio-inspired features for person re-identification and face verification[J]. Image and Vision Computing, 2014, 32(6/7): 379-390. |
13 | KÖESTINGER M, HIRZER M, WOHLHART P, et al. Large scale metric learning from equivalence constraints[C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 2288-2295. |
14 | LIU H, FENG J, JIE Z, et al. Neural person search machines[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 493-501. |
15 | ISLAM K. Person search: new paradigm of person re-identification: a survey and outlook of recent works[J].Image and Vision Computing, 2020, 101: 103970. |
16 | LIN X, REN P, XIAO Y,et al.Person search challenges and solutions: a survey[EB/OL]. [2023-03-20]. . |
17 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. |
18 | YANG J, WANG M, LI M, et al. Enhanced deep feature representation for person search[C]// Proceedings of the 2nd CCF Chinese Conference on Computer Vision. Cham: Springer, 2017: 315-327. |
19 | LAN X, ZHU X, GONG S. Person search by multi-scale matching[C]// Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 553-569. |
20 | DONG W, ZHANG Z, SONG C, et al. Instance guided proposal network for person search[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 2582-2591. |
21 | HAN C, YE J, ZHONG Y, et al. Re-ID driven localization refinement for person search[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9813-9822. |
22 | CHEN D, ZHANG S, OUYANG W, et al. Person search via a mask-guided two-stream CNN model[C]// Proceedings of the 15th European Conference on Computer Vision. Cham: Springer,2018: 764-781. |
23 | WANG C, MA B, CHANG H, et al. TCTS: a task-consistent two-stage framework for person search[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11949-11958. |
24 | HU R, WANG T, ZHOU Y, et al. FT-MDnet: a deep-frozen transfer learning framework for person search[J]. IEEE Transactions on Information Forensics and Security,2021, 16: 4721-4732. |
25 | LI Y, YIN K, LIANG J, et al. A multitask joint framework for real-time person search[J]. Multimedia Systems,2020, 29(1): 211-222. |
26 | ZHONG Y, WANG X, ZHANG S. Robust partial matching for person search in the wild[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 6826-6834. |
27 | LV N, XIANG X, WANG X, et al. Efficient person search via learning-to-normalize deep representation[J]. Neurocomputing,2022, 495: 169-177. |
28 | LEE S, OH Y, BAEK D, et al. OIMNet++: prototypical normalization and localization-aware learning for person search[C]// Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 621-637. |
29 | YAN Y, LI J, QIN J, et al. Anchor-free person search[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 7686-7695. |
30 | LI S, LU A, HUANG Y, et al. Joint token and feature alignment framework for text-based person search[J]. IEEE Signal Processing Letters, 2022, 29: 2238-2242. |
31 | CAO J, PANG Y, ANWER R M, et al. PSTR: end-to-end one-step person search with Transformers[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 9448-9457. |
32 | LI Y, XU H, BIAN M, et al. Cross-scale global attention feature pyramid network for person search[J]. Image and Vision Computing, 2021, 116: 104332. |
33 | OUYANG H, ZENG J, LENG L. Inception convolution and feature fusion for person search[J]. Sensors, 2023, 23(4): 1984. |
34 | LI Z, MIAO D. Sequential end-to-end network for efficient person search[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(3): 2011-2019. |
35 | KE X, LIU H, GUO W, et al. Joint sample enhancement and instance-sensitive feature learning for efficient person search[J]. IEEE Transactions on Circuits and Systems for Video Technology,2022, 32(11): 7924-7937. |
36 | XIAO T, LI S, WANG B, et al. Joint detection and identification feature learning for person search[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE,2017: 3376-3385. |
37 | LIU H, SHI W, HUANG W, et al. A discriminatively learned feature embedding based on multi-loss fusion for person search[C]// Proceedings of the 2018 IEEE International Conference on Acoustics,Speech and Signal Processing. Piscataway: IEEE,2018: 1668-1672. |
38 | CHEN D, ZHANG S, OUYANG W, et al. Hierarchical online instance matching for person search[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 10518-10525. |
39 | CHEN D, ZHANG S, YANG J,et al. Norm-aware embedding for efficient person search and tracking[J]. International Journal of Computer Vision, 2021, 129(11): 3154-3168. |
40 | DAI J, ZHANG P, LU H, et al. Dynamic imposter based online instance matching for person search[J]. Pattern Recognition,2020, 100: 107120. |
41 | YAN Y, ZHANG Q, NI B, et al. Learning context graph for person search[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE,2019: 2153-2162. |
42 | XIANG X, LV N, QIAO Y. Transformer-based person search model with symmetric online instance matching[C]// Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2022: 2729-2733. |
43 | SHI W, LIU H, LIU M. Identity-sensitive loss guided and instance feature boosted deep embedding for person search[J]. Neurocomputing, 2020, 415: 1-14. |
44 | HOU S, ZHAO C, CHEN Z, et al. Improved instance discrimination and feature compactness for end-to-end person search[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(4): 2079-2090. |
45 | YAO R, GAO C, XIA S, et al. GAN-based person search via deep complementary classifier with center-constrained triplet loss[J]. Pattern Recognition, 2020, 104: 107350. |
46 | CHEN D, ZHANG S, YANG J, et al. Norm-aware embedding for efficient person search[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 12612-12621. |
47 | XIAO J, XIE Y, TILLO T, et al. IAN: the individual aggregation network for person search[J]. Pattern Recognition, 2019, 87: 332-340. |
48 | CHEN Y, LI Z, SONG A. Multi-query person search with Transformers[C]// Pacific-Asia Conference on Knowledge Discovery and Data Mining. Singapore: Springer, 2024: 116-128. |
49 | CHEN Y, HAN D, CUI M, et al. ABOS: an attention-based one-stage framework for person search[J]. EURASIP Journal on Wireless Communications and Networking, 2022,2022:Article No. 75. |
50 | YU R, DU D, LaLONDE R, et al. Cascade transformers for end-to-end person search[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 7257-7266. |
51 | KIM H, JOUNG S, KIM I-J, et al. Prototype-guided saliency feature learning for person search[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 4863-4872. |
52 | YANG W, HUANG H, CHEN X, et al. Bottom-up foreground-aware feature fusion for practical person search[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(1): 262-274. |
53 | CHANG X, HUANG P-Y, SHEN Y-D, et al. RCAA: Relational context-aware agents for person search[C]// Proceedings of the 15th European Conference on Computer Vision. Cham: Springer,2018: 86-102. |
54 | MUNJAL B, AMIN S, TOMBARI F, et al. Query-guided end-to-end person search[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 811-820. |
55 | WANG X, LIU W, CHEN J, et al. Listen, look, and find the one: robust person search with multimodality index[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2020, 16(2): Article No. 47. |
56 | LIU C, YANG H, ZHU J, et al. Graph similarity rectification for person search[J]. Neurocomputing, 2021, 465: 184-194. |
57 | YAN Y, LI J, LIAO S, et al. Exploring visual context for weakly supervised person search[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(3): 3027-3035. |
58 | LI J, YAN Y, WANG G, et al. Domain adaptive person search[C]// Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 302-318. |
59 | GE J, GAO G, LIU Z. Visual-textual association with hardest and semi-hard negative pairs mining for person search[EB/OL].(2019-12-06)[2023-08-01]. . |
60 | LI H, XIAO J, SUN M, et al. Transformer-based language-person search with multiple region slicing[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(3): 1624-1633. |
61 | CHEN Y, HUANG R, CHANG H, et al. Cross-modal knowledge adaptation for language-based person search[J]. IEEE Transactions on Image Processing, 2021, 30: 4057-4069. |
62 | WANG W, XIE E, LI X, et al. PVTv2: Improved baselines with pyramid vision transformer[J]. Computational Visual Media,2022, 8(3): 415-424. |
63 | 浙江工商大学. 基于多任务深度学习的骑行人员未佩戴头盔行为检测方法: CN202111086458.X[P]. 2022-01-04. |
Zhejiang Gongshang University. A method for detecting unhelmeted behavior of cyclists based on multi task deep learning: CN202111086458.X[P]. 2022-01-04. | |
64 | 孙杰,吴绍鑫,王学军,等.基于Sophon SC5+芯片构架的行人搜索算法与优化[J].计算机应用, 2023, 43(3): 744-751. |
SUN J, WU S X, WANG X J, et al.Efficient person search algorithm and optimization with Sophon SC5+ chip architecture[J]. Journal of Computer Applications, 2023, 43(3): 744-751. | |
65 | 李亮奇. 基于深度学习的行人搜索问题研究[D].上海:上海交通大学,2019: 56-74. |
LI L Q. Deep learning based person search[D]. Shanghai: Shanghai Jiao Tong University, 2019: 56-74. |
[1] | Jie SUN, Shaoxin WU, Xuejun WANG, Jing HUA. Efficient person search algorithm and optimization with Sophon SC5+ chip architecture [J]. Journal of Computer Applications, 2023, 43(3): 744-751. |
[2] | ZHANG Yangshuo, MIAO Zhuang, WANG Jiabao, LI Yang. Pedestrian detection method based on Movidius neural computing stick [J]. Journal of Computer Applications, 2019, 39(8): 2230-2234. |
[3] | HAN Jianghong, YUAN Jiaxuan, WEI Xing, LU Yang. Pedestrian visual positioning algorithm for underground roadway based on deep learning [J]. Journal of Computer Applications, 2019, 39(3): 688-694. |
[4] | ZHU Fan, WANG Hongyuan, ZHANG Ji. Fine-grained pedestrian detection algorithm based on improved Mask R-CNN [J]. Journal of Computer Applications, 2019, 39(11): 3210-3215. |
[5] | CHEN Guangxi, WANG Jiaxin, HUANG Yong, ZHAN Yijun, ZHAN Baoying. Pedestrian detection method based on cascade networks [J]. Journal of Computer Applications, 2019, 39(1): 186-191. |
[6] | LI Lin, ZHANG Tao. Zenithal pedestrian detection algorithm based on improved aggregate channel features and gray-level co-occurrence matrix [J]. Journal of Computer Applications, 2018, 38(12): 3367-3371. |
[7] | CHAI Enhui, ZHI Min. Pedestrian detection based on deformable part model with branch and bound [J]. Journal of Computer Applications, 2017, 37(7): 2003-2007. |
[8] | XU Chao, YAN Shengye. Improved pedestrian detection method based on convolutional neural network [J]. Journal of Computer Applications, 2017, 37(6): 1708-1715. |
[9] | MA Qiang, WANG Wenwei. Pedestrian texture extraction by fusing significant factor [J]. Journal of Computer Applications, 2015, 35(11): 3293-3296. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||