[1] QIAN X, YU X, FA C. The passenger flow counting research of subway video based on image processing[C]//Proceedings of the 29th Chinese Control and Decision Conference. Piscataway, NJ:IEEE, 2017:5195-5198. [2] AGGARWAL J K, RYOO M S. Human activity analysis:a review[J]. ACM Computing Surveys, 2011, 43(3):Article No. 16. [3] CHEN T H, CHEN T Y, CHEN Z X. An intelligent people-flow counting method for passing through a gate[C]//Proceedings of the 2006 IEEE Conference on Robotics, Automation and Mechatronics. Piscataway, NJ:IEEE, 2006:1-6. [4] YU H B, HE Z W, LIU J L. A vision-based method to estimate passenger flow in bus[C]//Proceedings of the 2007 International Symposium on Intelligent Signal Processing and Communication Systems. Piscataway, NJ:IEEE, 2007:654-657. [5] LI J, HE Q, YANG L, et al. Pedestrian detection and counting in crowded scenes[C]//Proceedings of the 2016 International Conference on Green Intelligent Transportation System and Safety, LNEE 419. Berlin:Springer, 2016:495-511. [6] 牛胜石,毛晓晖,侯建华,等.基于Adaboost和SVM的人头实时检测[J].微型机与应用,2010(13):33-36.(NIU S S, MAO X H, HOU J H, et al. Realtime head detection based on Adaboost and SVM[J]. Microcomputer & Its Applications, 2010(13):33-36.) [7] 汤石晨,陈锻生.基于光流法和行人面积特征的人数统计方法研究[J].图学学报,2013,34(1):139-144.(TANG S C, CHEN D S. A method for people counting based on optical flow and pedestrian size[J]. Journal of Graphics, 2013, 34(1):139-144.) [8] LI B, ZHANG J, ZHANG Z, et al. A people counting method based on head detection and tracking[C]//Proceedings of the 2014 International Conference on Smart Computing. Piscataway, NJ:IEEE, 2014:136-141. [9] TANG C H, CHEN Q J. Zenithal people counting using histogram of oriented gradients[C]//Proceedings of the 5th International Congress on Image and Signal Processing. Piscataway, NJ. IEEE, 2012:946-951. [10] 刘恋,贺赛先,熊杰.一种基于多特征融合的头部检测算法[J].电光与控制,2016,23(9):106-110.(LIU L, HE S X, XIONG J. A head detection algorithm based on multi-feature fusion[J]. Electronics Optics & Control, 2016, 23(9):106-110.) [11] ZENG C B, MA H D. Robust Head-shoulder detection by PCA-based multilevel HOG-LBP detector for people counting[C]//Proceedings of the 20th International Conference on Pattern Recognition. Piscataway, NJ:IEEE, 2010:2069-2072. [12] DOLLÁR P, APPEL R, BELONGIE S, et al. Fast feature pyramids for object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(8):1532-1545. [13] HARALICK R M, SHANMUGAM K, DINSTEI I. Texture features for image classification[J]. IEEE Transactions on Systems, Man & Cybernetics, 1973, SMC-3(6):610-621. [14] SMITH A R. Color gamut transform pairs[C]//Proceedings of the 5th Conference on Computer Graphics and Interactive Techniques. New York:ACM, 1978:12-19. [15] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2005:886-893. [16] BOURDEV L, BRANDT J. Robust object detection via soft cascade[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2005:236-243. [17] YANG B, YAN J J, LEI Z, et al. Aggregate channel features for multi-view face detection[C]//Proceedings of the 2014 IEEE International Joint Conference on Biometrics. Piscataway, NJ:IEEE, 2014:1-8. [18] OJALA T, PIETIKAINEN M, HARWOOD D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions[C]//Proceedings of the 12th International Conference on Pattern Recognition. Piscataway, NJ:IEEE, 1994:582-585. [19] VIOLA P, JONES M J. Robust real-time object detection[J]. International Journal of Computer Vision, 2004, 57(2):137-154. [20] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9):1627-1645. [21] GAN G L, CHENG J. Pedestrian detection based on HOG-LBP feature[C]//Proceedings of the 7th International Conference on Computational Intelligence and Security. Piscataway, NJ:IEEE, 2011:1184-1187. [22] 唐春晖.一种基于多特征融合的单目俯视行人检测[J].系统仿真学报,2016,28(9):2146-2153.(TANG C H. Zenithal pedestrian detection using multiple feature fusion in monocular vision[J]. Journal of System Simulation, 2016, 28(9):2146-2153.) [23] 王强,冯燕.基于颜色和形状信息的快速人数统计方法[J].计算机测量与控制,2010, 18(9):2157-2159.(WANG Q, FENG Y. A fast people counting algorithm based on fusion of color and shape information[J]. Computer Measurement & Control, 2010, 18(9):2157-2159.) [24] DOLLÁR P, TU Z W, PERONA P, et al. Integral channel features[C]//Proceedings of the 2009 British Machine Vision Conference. Durham, UK:BMVA Press, 2009:91.1-91.11. [25] 栾书鹏.基于图块和二阶统计特征的行人检测[J].电子设计工程,2016,24(20):190-193.(LUAN S P. Pedestrian detection based on blocks-graphs and second-order statistics[J]. Electronic Design Engineering, 2016, 24(20):190-193.) |