Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (8): 2536-2543.DOI: 10.11772/j.issn.1001-9081.2023081184
• Computer software technology • Previous Articles Next Articles
Yi LIU, Guoli YANG, Qibin ZHENG(), Xiang LI, Yangsen ZHOU, Depeng CHEN
Received:
2023-09-03
Revised:
2023-10-08
Accepted:
2023-10-17
Online:
2024-08-22
Published:
2024-08-10
Contact:
Qibin ZHENG
About author:
LIU Yi, born in 1990, Ph. D., assistant research fellow. His research interests include intelligent data engineering, evolutionary algorithm.Supported by:
通讯作者:
郑奇斌
作者简介:
刘艺(1990—),男(回族),安徽蚌埠人,助理研究员,博士,主要研究方向:智能数据工程、演化算法基金资助:
CLC Number:
Yi LIU, Guoli YANG, Qibin ZHENG, Xiang LI, Yangsen ZHOU, Depeng CHEN. Architecture design of data fusion pipeline for unmanned systems[J]. Journal of Computer Applications, 2024, 44(8): 2536-2543.
刘艺, 杨国利, 郑奇斌, 李翔, 周杨森, 陈德鹏. 无人系统数据融合流水线架构设计[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2536-2543.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023081184
1 | 刘艺,李蒙蒙,郑奇斌,等. 视频目标跟踪算法综述[J]. 计算机科学与探索, 2022, 16(7): 1504-1515. |
LIU Y, LI M M, ZHENG Q B, et al. Survey on video object tracking algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1504-1515. | |
2 | 尹作重,刘继红,王佃鹏,等. 基于微服务的多机器人资源智能云服务平台架构[J]. 计算机集成制造系统, 2022, 28(7): 2102-2111. |
YIN Z Z, LIU J H, WANG D P, et al. Multi-robot resource intelligent cloud service platform based on microservice[J]. Computer Integrated Manufacturing Systems, 2022, 28(7): 2102-2111. | |
3 | VÉLEZ-NICOLÁS M, GARCÍA-LÓPEZ S, BARBERO L, et al. Applications of Unmanned Aerial Systems (UASs) in hydrology: a review[J]. Remote Sensing, 2021, 13(7): No.1359. |
4 | RAHMAN M F F, FAN S, ZHANG Y, et al. A comparative study on application of unmanned aerial vehicle systems in agriculture[J]. Agriculture, 2021, 11(1): No.22. |
5 | RENAULT A. A model for assessing UAV system architectures[J]. Procedia Computer Science, 2015, 61: 160-167. |
6 | QIU S, ZHAO H, JIANG N, et al. Multi-sensor information fusion based on machine learning for real applications in human activity recognition: state-of-the-art and research challenges[J]. Information Fusion, 2022, 80(4): 241-265. |
7 | LIU W, ZHANG T, HUANG S, et al. A hybrid optimization framework for UAV reconnaissance mission planning[J]. Computers and Industrial Engineering, 2022, 173: No.108653. |
8 | WAN L, LIU R, SUN L, et al. UAV swarm based radar signal sorting via multi-source data fusion: a deep transfer learning framework[J]. Information Fusion, 2022, 78: 90-101. |
9 | CASTANEDO F. A review of data fusion techniques[J]. The Scientific World Journal, 2013, 2013: No.704504. |
10 | DIEZ-OLIVAN A, DER SER J, GALAR D, et al. Data fusion and machine learning for industrial prognosis: trends and perspectives towards Industry 4.0[J]. Information Fusion, 2019, 50: 92-111. |
11 | LUO R C, KAY M G. Multisensor integration and fusion in intelligent systems[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1989, 19(5): 901-931. |
12 | AYED S B, TRICHILI H M, ALIMI A. Data fusion architectures: a survey and comparison[C]// Proceedings of the 15th International Conference on Intelligent Systems Design and Applications. Piscataway: IEEE, 2015: 277-282. |
13 | DASARATHY B V. Sensor fusion potential exploitation-innovative architectures and illustrative applications[J]. Proceedings of the IEEE, 1997, 85(1): 24-38. |
14 | BLASCH E, STEINBERG A, DAS S, et al. Revisiting the JDL model for information exploitation[C]// Proceedings of the 16th International Conference on Information Fusion. Piscataway: IEEE, 2013: 129-136. |
15 | ULLAH I, YOUN H Y. Intelligent data fusion for smart IoT environment: a survey[J]. Wireless Personal Communications, 2020, 114(1): 409-430. |
16 | ARAGÓN M E, CARLOS M R, GURROLA L C G, et al. A machine learning pipeline to automatically identify and classify roadway surface disruptions[C]// Proceedings of the 16th Mexican International Conference on Computer Science. New York: ACM, 2016: No.3. |
17 | ZUO S, LI J, LI Y, et al. Data processing pipeline for Tianlai experiment[J]. Astronomy and Computing, 2021, 34: No.100439. |
18 | DING X, CHEN L, GAO Y, et al. UlTraMan: a unified platform for big trajectory data management and analytics[J]. Proceedings of the VLDB Endowment, 2018, 11(7): 787-799. |
19 | POOJARA S R, DEHURY C K, DEHURY P, et al. Serverless data pipeline approaches for IoT data in fog and cloud computing[J]. Future Generation Computer Systems, 2022, 130: 91-105. |
20 | REZIG E K, BRAHMAROUTU A, TATBUL N, et al. Debugging large-scale data science pipelines using dagger[J]. Proceedings of the VLDB Endowment, 2020, 13(12): 2993-2996. |
21 | PEREIRA A, PROENÇA A. HEP-Frame: improving the efficiency of pipelined data transformation & filtering for scientific analyses[J]. Computer Physics Communications, 2021, 263: No.107844. |
22 | MISALE C, DROCCO M, TREMBLAY G, et al. PiCo: high-performance data analytics pipelines in modern C++[J]. Future Generation Computer Systems, 2018, 87: 392-403. |
23 | YANG C, FAN J, WU Z, et al. AutoML pipeline selection: efficiently navigating the combinatorial space[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 1446-1456. |
24 | DE PRADO M, SU J, SAEED R, et al. Bonseyes AI Pipeline — bringing AI to you: end-to-end integration of data, algorithms, and deployment tools[J]. ACM Transactions on Internet of Things, 2020, 1(4): No.26. |
25 | FROST R, PAUL D, LI F. AI Pro: data processing framework for AI Models[C]// Proceedings of the IEEE 35th International Conference on Data Engineering. Piscataway: IEEE, 2019: 1980-1983. |
26 | REZIG E K, CAO L, STONEBRAKER M, et al. Data Civilizer 2.0: a holistic framework for data preparation and analytics[J]. Proceedings of the VLDB Endowment, 2019, 12(12): 1954-1957. |
27 | OLEGHE O, SALONITIS K. A framework for designing data pipelines for manufacturing systems[J]. Procedia CIRP, 2020, 93: 724-729. |
28 | PERVAIZ F, VASHISTHA A, ANDERSON R. Examining the challenges in development data pipeline [C]// Proceedings of the 2nd ACM SIGCAS Conference on Computing and Sustainable Societies. New York: ACM, 2019: 13-21. |
29 | ALLA S, ADARI S K. Introduction to MLFlow[M]// Beginning MLOps with MLFlow: Deploy Models in AWS SageMaker, Google Cloud, and Microsoft Azure. Berkeley: Apress, 2021: 125-227. |
30 | ZHAO J, ZHANG X, YAN J, et al. A wheat spike detection method in UAV images based on improved YOLOv5[J]. Remote Sensing, 2021, 13(16): No.3095. |
31 | LI Y, YU L, LIU J, et al. NetDPO: (delta, gamma)-approximate pattern matching with gap constraints under one-off condition[J]. Applied Intelligence, 2022, 52(11): 12155-12174. |
32 | 丁玥,王涓,卢卫,等. 面向多源关系数据的融合[J]. 中国科学:信息科学, 2020, 50(5): 649-661. |
DING Y, WANG J, LU W, et al. Multi-source relational data fusion[J]. SCIENTIA SINICA Informationis, 2020, 50(5): 649-661. | |
33 | NAFA Y, CHEN Q, CHEN Z, et al. Active deep learning on entity resolution by risk sampling[J]. Knowledge-Based Systems, 2022, 236: No.107729. |
34 | 谭明超,刁兴春,曹建军. 实体分辨研究综述[J]. 计算机科学, 2014, 41(4): 9-12, 20. |
TAN M C, DIAO X C, CAO J J. Survey on entity resolution[J]. Computer Science, 2014, 41(4): 9-12, 20. | |
35 | 曹建军,常宸,陶嘉庆, 等. 多源文本数据真值发现方法[J]. 国防科技大学学报, 2022, 44(4): 172-179. |
CAO J J, CHANG C, TAO J Q, et al. Truth discovery method for multi-source text data[J]. Journal of National University of Defense Technology, 2022, 44(4): 172-179. | |
36 | YIN L, LUO J, LI K. An optimal image storage strategy for container-based edge computing in smart factory[J]. IEEE Internet of Things Journal, 2023, 10(8): 7204-7214. |
37 | DUDCZYK J, CZYBA R, SKRZYPCZYK K. Multi-sensory data fusion in terms of UAV detection in 3D space[J]. Sensors, 2022, 22(12): No.4323. |
38 | GUPTA A, FERNANDO X. Simultaneous Localization And Mapping (SLAM) and data fusion in unmanned aerial vehicles: recent advances and challenges[J]. Drones, 2022, 6(4): No.85. |
39 | LIN C, CHENG Y, WANG X. A convolutional neural network particle filter for UUV target state estimation[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: No.2508412. |
40 | LIU W, LIU Y, BUCKNALL R. Filtering based multi-sensor data fusion algorithm for a reliable unmanned surface vehicle navigation[J]. Journal of Marine Engineering and Technology, 2023, 22(2): 67-83. |
41 | 张卫民,刘灿灿,骆志刚. 科学工作流技术研究综述[J]. 国防科技大学学报, 2011, 33(3): 56-65. |
ZHANG W M, LIU C C, LUO Z G. A review on scientific workflows[J]. Journal of National University of Defense Technology, 2011, 33(3): 56-65. | |
42 | 文一凭,侯俊杰,谭铮,等. 面向交互式建模的科学工作流活动推荐方法[J]. 计算机集成制造系统, 2022, 28(10): 3115-3121. |
WEN Y P, HOU J J, TAN Z, et al. Scientific workflow activity recommendation for interactive modeling[J]. Computer Integrated Manufacturing Systems, 2022, 28(10): 3115-3121. | |
43 | TSOUTSA P, FITSILIS P, ANTHOPOULOS L, et al. Nexus services in smart city ecosystems[J]. Journal of the Knowledge Economy, 2021, 12: 431-451. |
44 | 李庚松,刘艺,秦伟, 等. 面向算法选择的元学习研究综述[J]. 计算机科学与探索, 2023, 17(1): 88-107. |
LI G S, LIU Y, QIN W, et al. Survey on meta-learning research of algorithm selection[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 88-107. | |
45 | 李庚松,刘艺,郑奇斌,等. 基于多目标混合蚁狮优化的算法选择方法[J]. 计算机研究与发展, 2023, 60(7): 1533-1550. |
LI G S, LIU Y, ZHENG Q B, et al. Algorithm selection method based on multi-objective hybrid ant lion optimizer[J]. Journal of Computer Research and Development, 2023, 60(7): 1533-1550. | |
46 | KERSCHKE P, HOOS H H, NEUMANN F, et al. Automated algorithm selection: survey and perspectives[J]. Evolutionary Computation, 2019, 27(1): 3-45. |
47 | RAUT A, SHIVHARE A, CHAURASIYA V K, et al. AEDS-IoT: adaptive clustering-based event detection scheme for IoT data streams[J]. Internet of Things, 2023, 22: No.100704. |
48 | 李于锋, 莫则尧, 肖永浩,等. 超算环境科学工作流应用的容错[J]. 国防科技大学学报, 2020, 42(6): 82-89. |
LI Y F, MO Z Y, XIAO Y H, et al. Fault tolerance in HPC scientific workflow application[J]. Journal of National University of Defense Technology, 2020, 42(6): 82-89. | |
49 | SOLÀ J. Quaternion kinematics for the error-state Kalman filter[EB/OL]. (2017-11-03) [2023-07-08].. |
[1] | Wei LUO, Jinquan LIU, Zheng ZHANG. Dual vertical federated learning framework incorporating secret sharing technology [J]. Journal of Computer Applications, 2024, 44(6): 1872-1879. |
[2] | Xiang LIU, Bei HUA, Fei LIN, Hongyuan WEI. Design and implementation of component-based development framework for deep learning applications [J]. Journal of Computer Applications, 2024, 44(2): 526-535. |
[3] | Xiuli REN, Lei ZHANG. Improved multi-primary-node consensus mechanism based on practical Byzantine fault tolerance [J]. Journal of Computer Applications, 2022, 42(5): 1500-1507. |
[4] | Haiwen XU, Jiacai SHI, Teng WANG. Departure flight delay prediction model based on deep fully connected neural network [J]. Journal of Computer Applications, 2022, 42(10): 3283-3291. |
[5] | HUANG Chengcheng, DONG Xiaoxiao, LI Zhao. Deep pipeline 5×5 convolution method based on two-dimensional Winograd algorithm [J]. Journal of Computer Applications, 2021, 41(8): 2258-2264. |
[6] | QU Jingyi, CAO Lei, CHEN Min, DONG Liang, CAO Yexiu. CliqueNet flight delay prediction model based on clique random connection [J]. Journal of Computer Applications, 2020, 40(8): 2420-2427. |
[7] | XIONG Yong, ZHANG Jia, YU Jiajun, ZHANG Benren, LIANG Xuanzhuo, ZHU Qige. Intelligent layout optimization algorithm for 3D pipelines of ships [J]. Journal of Computer Applications, 2020, 40(7): 2164-2170. |
[8] | ZHU Xiaojie, ZHAO Zihao, DU Yi. PiFlow: model driven big data pipeline framework [J]. Journal of Computer Applications, 2020, 40(6): 1638-1647. |
[9] | CHEN Guihui, YI Xin, LI Zhongbing, QIAN Jiren, CHEN Wu. Third-party construction target detection in aerial images of pipeline inspection based on improved YOLOv2 and transfer learning [J]. Journal of Computer Applications, 2020, 40(4): 1062-1068. |
[10] | LIN Zheng, LYU Xiafu. Autonomous obstacle avoidance of unmanned surface vessel based on improved fuzzy algorithm [J]. Journal of Computer Applications, 2019, 39(9): 2523-2528. |
[11] | HUANG Fengyu, WU Yefu, CHEN Jingren, WU Bing. Traffic behavior spectrum analysis method based on regional road live data [J]. Journal of Computer Applications, 2019, 39(3): 907-912. |
[12] | DING Jingquan, MA Bo, LI Xiao. Multi-view deep anomaly detection framework for vehicle refueling behaviors based on spatio-temporal data fusion [J]. Journal of Computer Applications, 2019, 39(11): 3370-3375. |
[13] | QIU Jinyi, LUO Jun, LI Xiu, JIA Wei, NI Fuchuan, FENG Hui. Multi-scale grape image recognition method based on convolutional neural network [J]. Journal of Computer Applications, 2019, 39(10): 2930-2936. |
[14] | WU Renbiao, LI Jiayi, QU Jingyi. Flight delay prediction model based on dual-channel convolutional neural network [J]. Journal of Computer Applications, 2018, 38(7): 2100-2106. |
[15] | XU Shuang, ZHANG Qian, LI Yan, LIU Jiayong. Multi-source point of interest fusion algorithm based on distance and category [J]. Journal of Computer Applications, 2018, 38(5): 1334-1338. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||