Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (8): 2618-2625.DOI: 10.11772/j.issn.1001-9081.2023081226
• Frontier and comprehensive applications • Previous Articles Next Articles
Yanjie GU1, Yingjun ZHANG1,2,3(), Xiaoqian LIU1, Wei ZHOU1,4, Wei SUN1
Received:
2023-09-08
Revised:
2023-10-19
Accepted:
2023-11-02
Online:
2024-08-22
Published:
2024-08-10
Contact:
Yingjun ZHANG
About author:
GU Yanjie, born in 1999, M. S. candidate. His research interests include machine learning, time series prediction.Supported by:
顾焰杰1, 张英俊1,2,3(), 刘晓倩1, 周围1,4, 孙威1
通讯作者:
张英俊
作者简介:
顾焰杰(1999—),男,河北邢台人,硕士研究生,CCF会员,主要研究方向:机器学习、时间序列预测基金资助:
CLC Number:
Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion[J]. Journal of Computer Applications, 2024, 44(8): 2618-2625.
顾焰杰, 张英俊, 刘晓倩, 周围, 孙威. 基于时空多图融合的交通流量预测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2618-2625.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023081226
数据集名称 | 区域数 | 序列长度 | 时间间隔/min |
---|---|---|---|
NYCTaxi | 75 | 17 520 | 30 |
NYCBike | 128 | 4 392 | 60 |
Tab. 1 Basic information of experimental datasets
数据集名称 | 区域数 | 序列长度 | 时间间隔/min |
---|---|---|---|
NYCTaxi | 75 | 17 520 | 30 |
NYCBike | 128 | 4 392 | 60 |
数据集 | 时间步 | 指标 | STGCN | DCRNN | GWNET | AGCRN | ASTGNN | MegaCRN | STMGF |
---|---|---|---|---|---|---|---|---|---|
NYCBike | 12 | MAE | 5.045 | 5.119 | 5.316 | 5.138 | 4.974 | 4.951 | 4.909 |
RMSE | 8.599 | 8.839 | 9.162 | 8.774 | 8.618 | 8.587 | 8.373 | ||
18 | MAE | 5.238 | 5.229 | 5.493 | 5.27 | 5.105 | 5.088 | 5.036 | |
RMSE | 9.145 | 9.085 | 9.587 | 9.903 | 8.801 | 8.788 | 8.622 | ||
24 | MAE | 5.421 | 5.362 | 5.608 | 5.513 | 5.219 | 5.365 | 5.119 | |
RMSE | 9.673 | 9.574 | 9.798 | 9.631 | 9.132 | 9.624 | 9.017 | ||
36 | MAE | 6.092 | 5.823 | 6.124 | 5.888 | 5.718 | 5.696 | 5.628 | |
RMSE | 11.021 | 10.480 | 10.936 | 10.448 | 10.370 | 10.315 | 10.088 | ||
NYCTaxi | 12 | MAE | 17.163 | 16.528 | 16.892 | 16.513 | 16.203 | 16.195 | 16.114 |
RMSE | 33.567 | 33.032 | 32.651 | 32.368 | 31.545 | 31.570 | 31.561 | ||
18 | MAE | 17.386 | 17.200 | 18.227 | 17.292 | 16.915 | 16.845 | 16.762 | |
RMSE | 34.138 | 33.649 | 34.961 | 33.600 | 33.345 | 32.949 | 32.670 | ||
24 | MAE | 18.212 | 18.449 | 18.756 | 18.174 | 17.338 | 17.305 | 17.278 | |
RMSE | 35.742 | 34.521 | 36.375 | 35.653 | 34.359 | 34.210 | 34.085 | ||
36 | MAE | 18.727 | 18.744 | 19.56 | 19.544 | 18.362 | 18.305 | 18.237 | |
RMSE | 37.004 | 37.402 | 38.266 | 38.683 | 36.309 | 36.210 | 36.048 |
Tab. 2 Performance comparison results on two traffic flow datasets
数据集 | 时间步 | 指标 | STGCN | DCRNN | GWNET | AGCRN | ASTGNN | MegaCRN | STMGF |
---|---|---|---|---|---|---|---|---|---|
NYCBike | 12 | MAE | 5.045 | 5.119 | 5.316 | 5.138 | 4.974 | 4.951 | 4.909 |
RMSE | 8.599 | 8.839 | 9.162 | 8.774 | 8.618 | 8.587 | 8.373 | ||
18 | MAE | 5.238 | 5.229 | 5.493 | 5.27 | 5.105 | 5.088 | 5.036 | |
RMSE | 9.145 | 9.085 | 9.587 | 9.903 | 8.801 | 8.788 | 8.622 | ||
24 | MAE | 5.421 | 5.362 | 5.608 | 5.513 | 5.219 | 5.365 | 5.119 | |
RMSE | 9.673 | 9.574 | 9.798 | 9.631 | 9.132 | 9.624 | 9.017 | ||
36 | MAE | 6.092 | 5.823 | 6.124 | 5.888 | 5.718 | 5.696 | 5.628 | |
RMSE | 11.021 | 10.480 | 10.936 | 10.448 | 10.370 | 10.315 | 10.088 | ||
NYCTaxi | 12 | MAE | 17.163 | 16.528 | 16.892 | 16.513 | 16.203 | 16.195 | 16.114 |
RMSE | 33.567 | 33.032 | 32.651 | 32.368 | 31.545 | 31.570 | 31.561 | ||
18 | MAE | 17.386 | 17.200 | 18.227 | 17.292 | 16.915 | 16.845 | 16.762 | |
RMSE | 34.138 | 33.649 | 34.961 | 33.600 | 33.345 | 32.949 | 32.670 | ||
24 | MAE | 18.212 | 18.449 | 18.756 | 18.174 | 17.338 | 17.305 | 17.278 | |
RMSE | 35.742 | 34.521 | 36.375 | 35.653 | 34.359 | 34.210 | 34.085 | ||
36 | MAE | 18.727 | 18.744 | 19.56 | 19.544 | 18.362 | 18.305 | 18.237 | |
RMSE | 37.004 | 37.402 | 38.266 | 38.683 | 36.309 | 36.210 | 36.048 |
模型 | 步长为12 | 步长为18 | ||||||
---|---|---|---|---|---|---|---|---|
NYCBike | NYCTaxi | NYCBike | NYCTaxi | |||||
MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | |
STMGF | 4.909 | 8.373 | 16.114 | 31.561 | 5.036 | 8.622 | 16.762 | 32.670 |
STMGF⁃Ⅰ | 5.013 | 8.490 | 16.377 | 31.910 | 5.223 | 9.216 | 17.563 | 35.390 |
STMGF⁃Ⅱ | 5.245 | 9.078 | 16.727 | 32.562 | 5.809 | 10.272 | 19.157 | 36.097 |
STMGF⁃Ⅲ | 5.360 | 9.218 | 16.897 | 33.147 | 5.594 | 9.769 | 18.489 | 35.756 |
Tab. 3 Experimental results of variant models with predicted step sizes of 12 and 18
模型 | 步长为12 | 步长为18 | ||||||
---|---|---|---|---|---|---|---|---|
NYCBike | NYCTaxi | NYCBike | NYCTaxi | |||||
MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | |
STMGF | 4.909 | 8.373 | 16.114 | 31.561 | 5.036 | 8.622 | 16.762 | 32.670 |
STMGF⁃Ⅰ | 5.013 | 8.490 | 16.377 | 31.910 | 5.223 | 9.216 | 17.563 | 35.390 |
STMGF⁃Ⅱ | 5.245 | 9.078 | 16.727 | 32.562 | 5.809 | 10.272 | 19.157 | 36.097 |
STMGF⁃Ⅲ | 5.360 | 9.218 | 16.897 | 33.147 | 5.594 | 9.769 | 18.489 | 35.756 |
层数 | NYCBike | |
---|---|---|
MAE | RMSE | |
4 | 4.990 | 8.608 |
3 | 4.909 | 8.373 |
2 | 4.948 | 8.517 |
1 | 5.304 | 8.917 |
Tab. 4 Experimental results of different layer number with predicted step size of 12
层数 | NYCBike | |
---|---|---|
MAE | RMSE | |
4 | 4.990 | 8.608 |
3 | 4.909 | 8.373 |
2 | 4.948 | 8.517 |
1 | 5.304 | 8.917 |
NYCBike | ||
---|---|---|
MAE | RMSE | |
2 | 4.972 | 8.532 |
4 | 4.909 | 8.373 |
8 | 4.997 | 8.548 |
Tab. 5 Experimental results of different nhead with prediction step size of 12
NYCBike | ||
---|---|---|
MAE | RMSE | |
2 | 4.972 | 8.532 |
4 | 4.909 | 8.373 |
8 | 4.997 | 8.548 |
1 | LI Y, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[C/OL]// Proceedings of the 2018 International Conference on Learning Representations [2023-08-01]. . |
2 | GUO S, LIN Y, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 922-929. |
3 | WU Z, PAN S, LONG G, et al. Graph WaveNet for deep spatial-temporal graph modeling[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2019: 1907-1913. |
4 | SHAO W, JIN Z, WANG S, et al. Long-term spatiotemporal forecasting via dynamic multiple-graph attention[C]// Proceedings of the 31st International Joint Conference on Artificial Intelligence. California: ijcai.org, 2022: 2225-2232. |
5 | LI M, ZHU Z. Spatial-temporal fusion graph neural networks for traffic flow forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5): 4189-4196. |
6 | WANG X, MA Y, WANG Y. Traffic flow prediction via spatial temporal graph neural network[C]// Proceedings of the Web Conference 2020. New York: ACM, 2020:1082-1092. |
7 | ZHENG C, FAN X, WANG C, et al. GMAN: a graph multi-attention network for traffic prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 1234-1241. |
8 | 夏进, 王正群,朱世明. 基于时间序列分解的交通流量预测模型[J]. 计算机应用, 2023, 43(4):1129-1135. |
XIA J, WANG Z Q, ZHU S M. Traffic flow prediction model based on time series decomposition[J]. Journal of Computer Applications, 2023, 43(4):1129-1135. | |
9 | WANG C, ZHU Y, ZANG T, et al. Modeling inter-station relationships with attentive temporal graph convolutional network for air quality prediction[C]// Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York: ACM, 2021: 616-634. |
10 | TRIRAT P, YOON S, LEE J-G, et al. MG-TAR: multi-view graph convolutional networks for traffic accident risk prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(4):3779-3794. |
11 | LI H, JIN D, LI X, et al. DMGF-Net: an efficient dynamic multi-graph fusion network for traffic prediction[J]. ACM Transactions on Knowledge Discovery from Data, 2023, 17(7): Article No. 97. |
12 | GE L, JIA Y, LI Q, et al. Dynamic multi-graph convolution recurrent neural network for traffic speed prediction[J]. Journal of Intelligent & Fuzzy Systems, 2023, 44(5):7319-7332. |
13 | TAO S, ZHANG H, YANG F. Multiple information spatial-temporal attention based graph convolution network for traffic prediction[J]. Applied Soft Computing, 2023, 136:110052. |
14 | SONG C, LIN Y, GUO S, et al. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 914-921. |
15 | XU Y, LYU Y, XIONG G, et al. Adaptive feature fusion networks for origin-destination passenger flow prediction in metro systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(5):5296-5312. |
16 | WANG B, ZHANG Y, SHI J, et al. Knowledge expansion and consolidation for continual traffic prediction with expanding graphs[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(7):7190-7201. |
17 | HUO G, ZHANG Y, WANG B, et al. Hierarchical spatio-temporal graph convolutional networks and transformer network for traffic flow forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(4):3855-3867. |
18 | XU Z, KANG Y, CAO Y. High-resolution urban flows forecasting with coarse-grained spatiotemporal data[J]. IEEE Transaction on Artificial Intelligence, 2023, 4(2):315-327. |
19 | 王海起, 王志海, 李留珂, 等. 基于网格划分的城市短时交通流量时空预测模型[J]. 计算机应用, 2022, 42(7):2274-2280. |
WANG H Q, WANG Z H, LI L K, et al. Spatial-temporal prediction model of urban short-term traffic flow based on grid division[J]. Journal of Computer Applications, 2023, 42(7):2274-2280. | |
20 | GENG X, LI Y, WANG L. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 36(1): 3656-3663. |
21 | YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2018:3634-3640. |
22 | CHOI J, CHOI H, HWANG J, et al. Graph neural controlled differential equations for traffic forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(6):6367-6374. |
23 | GUO S, LIN Y, WAN H, et al. Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(11):5415-5428. |
24 | LI Q, HAN Z, WU X. Deeper insights into graph convolutional networks for semi-supervised learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1):3538-3545. |
25 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017:6000-6010. |
26 | JIANG J, HAN C, ZHAO X, et al. PDFormer: propagation delay-aware dynamic long-range Transformer for traffic flow prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(4): 4365-4373. |
27 | LI S, JIN X, XUAN Y, et al. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 5243-5253. |
28 | WANG J, JIANG J, JIANG W, et al. LibCity: an open library for traffic prediction[C]// Proceedings of the 29th International Conference on Advances in Geographic Information Systems. New York: ACM, 2021:145-148. |
29 | JIANG R, WANG Z, YONG J, et. al . Spatio-temporal meta-graph learning for traffic forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(7): 8078-8086. |
[1] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[3] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[4] | Hang YANG, Wanggen LI, Gensheng ZHANG, Zhige WANG, Xin KAI. Multi-layer information interactive fusion algorithm based on graph neural network for session-based recommendation [J]. Journal of Computer Applications, 2024, 44(9): 2719-2725. |
[5] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[6] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[7] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[8] | Chenqian LI, Jun LIU. Ultrasound carotid plaque segmentation method based on semi-supervision and multi-scale cascaded attention [J]. Journal of Computer Applications, 2024, 44(8): 2604-2610. |
[9] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[10] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[11] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[12] | Zhi ZHANG, Xin LI, Naifu YE, Kaixi HU. DKP: defending against model stealing attacks based on dark knowledge protection [J]. Journal of Computer Applications, 2024, 44(7): 2080-2086. |
[13] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
[14] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[15] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||