Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (6): 1879-1887.DOI: 10.11772/j.issn.1001-9081.2024050708
• Data science and technology • Previous Articles
Panpan GUO, Gang ZHOU(), Jicang LU, Zhufeng LI, Taojie ZHU
Received:
2024-05-28
Revised:
2024-08-01
Accepted:
2024-08-08
Online:
2024-08-26
Published:
2025-06-10
Contact:
Gang ZHOU
About author:
GUO Panpan, born in 1992, Ph. D. candidate. Her research interests include recommendation systemSupported by:
通讯作者:
周刚
作者简介:
郭盼盼(1992—),女,河南周口人,博士研究生,主要研究方向:推荐系统基金资助:
CLC Number:
Panpan GUO, Gang ZHOU, Jicang LU, Zhufeng LI, Taojie ZHU. Paper recommendation method with mixed information enhancement[J]. Journal of Computer Applications, 2025, 45(6): 1879-1887.
郭盼盼, 周刚, 卢记仓, 李珠峰, 祝涛杰. 混合信息增强的论文推荐方法[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1879-1887.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024050708
数据集 | 方法 | R@5 | R@10 | R@15 | R@20 | R@25 | R@30 | N@5 | N@10 | N@15 | N@20 | N@25 | N@30 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AAN | NMF | 0.007 7 | 0.017 9 | 0.028 2 | 0.030 7 | 0.043 6 | 0.053 8 | 0.027 7 | 0.056 1 | 0.077 1 | 0.081 8 | 0.103 6 | 0.119 5 |
NMF+ | 0.069 2 | 0.125 6 | 0.174 4 | 0.192 3 | 0.220 5 | 0.241 0 | 0.141 5 | 0.212 8 | 0.267 7 | 0.287 0 | 0.316 4 | 0.337 3 | |
SVD | 0.005 1 | 0.005 1 | 0.007 7 | 0.007 7 | 0.007 7 | 0.010 3 | 0.017 0 | 0.017 0 | 0.027 7 | 0.027 7 | 0.027 7 | 0.036 2 | |
SVD+ | 0.023 1 | 0.046 2 | 0.053 8 | 0.059 0 | 0.059 0 | 0.084 6 | 0.067 1 | 0.107 7 | 0.119 5 | 0.127 0 | 0.127 0 | 0.162 2 | |
LSMC | 0.000 0 | 0.002 6 | 0.002 6 | 0.002 6 | 0.002 6 | 0.002 6 | 0.000 0 | 0.000 0 | 0.000 0 | 0.000 0 | 0.000 0 | 0.000 0 | |
LSMC+ | 0.028 2 | 0.059 0 | 0.079 5 | 0.094 9 | 0.105 1 | 0.117 9 | 0.077 1 | 0.127 0 | 0.155 5 | 0.175 4 | 0.188 2 | 0.203 7 | |
GoDec | 0.048 7 | 0.092 3 | 0.125 6 | 0.146 2 | 0.151 3 | 0.156 4 | 0.111 7 | 0.172 1 | 0.212 8 | 0.236 5 | 0.242 3 | 0.248 0 | |
GoDec+ | 0.053 8 | 0.141 0 | 0.179 5 | 0.230 8 | 0.264 1 | 0.302 6 | 0.119 5 | 0.230 7 | 0.273 3 | 0.326 9 | 0.360 4 | 0.397 8 | |
DBLP | NMF | 0.002 6 | 0.002 6 | 0.005 3 | 0.005 3 | 0.007 9 | 0.010 6 | 0.000 0 | 0.000 0 | 0.017 3 | 0.017 3 | 0.028 3 | 0.037 0 |
NMF+ | 0.084 4 | 0.110 8 | 0.142 5 | 0.163 6 | 0.195 3 | 0.216 4 | 0.162 4 | 0.195 6 | 0.232 8 | 0.256 4 | 0.290 6 | 0.312 6 | |
SVD | 0.002 6 | 0.002 6 | 0.002 6 | 0.002 6 | 0.007 9 | 0.007 9 | 0.000 0 | 0.000 0 | 0.000 0 | 0.000 0 | 0.028 3 | 0.028 3 | |
SVD+ | 0.002 6 | 0.007 9 | 0.015 8 | 0.023 7 | 0.023 7 | 0.029 0 | 0.000 0 | 0.028 3 | 0.051 1 | 0.068 6 | 0.068 6 | 0.078 8 | |
LSMC | 0.007 9 | 0.007 9 | 0.007 9 | 0.010 6 | 0.010 6 | 0.010 6 | 0.028 3 | 0.028 3 | 0.028 3 | 0.037 0 | 0.037 0 | 0.037 0 | |
LSMC+ | 0.036 9 | 0.058 0 | 0.073 9 | 0.076 5 | 0.081 8 | 0.089 7 | 0.092 9 | 0.126 0 | 0.148 3 | 0.151 9 | 0.158 9 | 0.169 2 | |
GoDec | 0.113 5 | 0.182 1 | 0.203 2 | 0.221 6 | 0.237 5 | 0.240 1 | 0.198 8 | 0.276 5 | 0.298 9 | 0.318 1 | 0.334 2 | 0.336 8 | |
GoDec+ | 0.131 9 | 0.184 7 | 0.216 4 | 0.248 0 | 0.274 4 | 0.290 2 | 0.220 6 | 0.279 3 | 0.312 6 | 0.344 8 | 0.370 9 | 0.386 4 |
Tab. 1 Comparison of recall and normalized discounted cumulative gain of different methods on two datasets
数据集 | 方法 | R@5 | R@10 | R@15 | R@20 | R@25 | R@30 | N@5 | N@10 | N@15 | N@20 | N@25 | N@30 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AAN | NMF | 0.007 7 | 0.017 9 | 0.028 2 | 0.030 7 | 0.043 6 | 0.053 8 | 0.027 7 | 0.056 1 | 0.077 1 | 0.081 8 | 0.103 6 | 0.119 5 |
NMF+ | 0.069 2 | 0.125 6 | 0.174 4 | 0.192 3 | 0.220 5 | 0.241 0 | 0.141 5 | 0.212 8 | 0.267 7 | 0.287 0 | 0.316 4 | 0.337 3 | |
SVD | 0.005 1 | 0.005 1 | 0.007 7 | 0.007 7 | 0.007 7 | 0.010 3 | 0.017 0 | 0.017 0 | 0.027 7 | 0.027 7 | 0.027 7 | 0.036 2 | |
SVD+ | 0.023 1 | 0.046 2 | 0.053 8 | 0.059 0 | 0.059 0 | 0.084 6 | 0.067 1 | 0.107 7 | 0.119 5 | 0.127 0 | 0.127 0 | 0.162 2 | |
LSMC | 0.000 0 | 0.002 6 | 0.002 6 | 0.002 6 | 0.002 6 | 0.002 6 | 0.000 0 | 0.000 0 | 0.000 0 | 0.000 0 | 0.000 0 | 0.000 0 | |
LSMC+ | 0.028 2 | 0.059 0 | 0.079 5 | 0.094 9 | 0.105 1 | 0.117 9 | 0.077 1 | 0.127 0 | 0.155 5 | 0.175 4 | 0.188 2 | 0.203 7 | |
GoDec | 0.048 7 | 0.092 3 | 0.125 6 | 0.146 2 | 0.151 3 | 0.156 4 | 0.111 7 | 0.172 1 | 0.212 8 | 0.236 5 | 0.242 3 | 0.248 0 | |
GoDec+ | 0.053 8 | 0.141 0 | 0.179 5 | 0.230 8 | 0.264 1 | 0.302 6 | 0.119 5 | 0.230 7 | 0.273 3 | 0.326 9 | 0.360 4 | 0.397 8 | |
DBLP | NMF | 0.002 6 | 0.002 6 | 0.005 3 | 0.005 3 | 0.007 9 | 0.010 6 | 0.000 0 | 0.000 0 | 0.017 3 | 0.017 3 | 0.028 3 | 0.037 0 |
NMF+ | 0.084 4 | 0.110 8 | 0.142 5 | 0.163 6 | 0.195 3 | 0.216 4 | 0.162 4 | 0.195 6 | 0.232 8 | 0.256 4 | 0.290 6 | 0.312 6 | |
SVD | 0.002 6 | 0.002 6 | 0.002 6 | 0.002 6 | 0.007 9 | 0.007 9 | 0.000 0 | 0.000 0 | 0.000 0 | 0.000 0 | 0.028 3 | 0.028 3 | |
SVD+ | 0.002 6 | 0.007 9 | 0.015 8 | 0.023 7 | 0.023 7 | 0.029 0 | 0.000 0 | 0.028 3 | 0.051 1 | 0.068 6 | 0.068 6 | 0.078 8 | |
LSMC | 0.007 9 | 0.007 9 | 0.007 9 | 0.010 6 | 0.010 6 | 0.010 6 | 0.028 3 | 0.028 3 | 0.028 3 | 0.037 0 | 0.037 0 | 0.037 0 | |
LSMC+ | 0.036 9 | 0.058 0 | 0.073 9 | 0.076 5 | 0.081 8 | 0.089 7 | 0.092 9 | 0.126 0 | 0.148 3 | 0.151 9 | 0.158 9 | 0.169 2 | |
GoDec | 0.113 5 | 0.182 1 | 0.203 2 | 0.221 6 | 0.237 5 | 0.240 1 | 0.198 8 | 0.276 5 | 0.298 9 | 0.318 1 | 0.334 2 | 0.336 8 | |
GoDec+ | 0.131 9 | 0.184 7 | 0.216 4 | 0.248 0 | 0.274 4 | 0.290 2 | 0.220 6 | 0.279 3 | 0.312 6 | 0.344 8 | 0.370 9 | 0.386 4 |
数据集 | 方法 | R@5 | R@10 | R@15 | R@20 | R@25 | R@30 | N@5 | N@10 | N@15 | N@20 | N@25 | N@30 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AAN | GoDecc+ | 0.038 5 | 0.079 5 | 0.110 3 | 0.148 7 | 0.164 1 | 0.182 1 | 0.095 2 | 0.155 4 | 0.194 5 | 0.239 4 | 0.256 5 | 0.276 0 |
GoDecs+ | 0.082 1 | 0.135 9 | 0.156 4 | 0.192 3 | 0.212 8 | 0.233 3 | 0.158 8 | 0.224 8 | 0.248 0 | 0.287 0 | 0.308 5 | 0.329 5 | |
GoDec+ | 0.053 8 | 0.141 0 | 0.179 5 | 0.230 8 | 0.264 1 | 0.302 6 | 0.119 5 | 0.230 7 | 0.273 3 | 0.326 9 | 0.360 4 | 0.397 8 | |
DBLP | GoDecc+ | 0.116 1 | 0.182 1 | 0.203 2 | 0.221 6 | 0.237 5 | 0.237 5 | 0.202 0 | 0.276 5 | 0.298 9 | 0.318 1 | 0.334 2 | 0.334 2 |
GoDecs+ | 0.129 3 | 0.190 0 | 0.221 6 | 0.248 0 | 0.271 8 | 0.287 6 | 0.217 6 | 0.285 0 | 0.318 1 | 0.344 8 | 0.368 4 | 0.383 8 | |
GoDec+ | 0.131 9 | 0.184 7 | 0.216 4 | 0.248 0 | 0.274 4 | 0.290 2 | 0.220 6 | 0.279 3 | 0.312 6 | 0.344 8 | 0.370 9 | 0.386 4 |
Tab. 2 Comparison of recall and normalized discounted cumulative gain of mixed information enhancement method and its variants on two datasets
数据集 | 方法 | R@5 | R@10 | R@15 | R@20 | R@25 | R@30 | N@5 | N@10 | N@15 | N@20 | N@25 | N@30 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AAN | GoDecc+ | 0.038 5 | 0.079 5 | 0.110 3 | 0.148 7 | 0.164 1 | 0.182 1 | 0.095 2 | 0.155 4 | 0.194 5 | 0.239 4 | 0.256 5 | 0.276 0 |
GoDecs+ | 0.082 1 | 0.135 9 | 0.156 4 | 0.192 3 | 0.212 8 | 0.233 3 | 0.158 8 | 0.224 8 | 0.248 0 | 0.287 0 | 0.308 5 | 0.329 5 | |
GoDec+ | 0.053 8 | 0.141 0 | 0.179 5 | 0.230 8 | 0.264 1 | 0.302 6 | 0.119 5 | 0.230 7 | 0.273 3 | 0.326 9 | 0.360 4 | 0.397 8 | |
DBLP | GoDecc+ | 0.116 1 | 0.182 1 | 0.203 2 | 0.221 6 | 0.237 5 | 0.237 5 | 0.202 0 | 0.276 5 | 0.298 9 | 0.318 1 | 0.334 2 | 0.334 2 |
GoDecs+ | 0.129 3 | 0.190 0 | 0.221 6 | 0.248 0 | 0.271 8 | 0.287 6 | 0.217 6 | 0.285 0 | 0.318 1 | 0.344 8 | 0.368 4 | 0.383 8 | |
GoDec+ | 0.131 9 | 0.184 7 | 0.216 4 | 0.248 0 | 0.274 4 | 0.290 2 | 0.220 6 | 0.279 3 | 0.312 6 | 0.344 8 | 0.370 9 | 0.386 4 |
方法 | 文章编号 | 文章标题 |
---|---|---|
GoDec+ | 10068 | Multi-Objective Optimization Robust Power Efficient Secure Full-Duplex Wireless Communication Systems |
13593 | Secure Green SWIPT Distributed Antenna Networks With Limited Backhaul Capacity | |
566 | Resource Allocation Outdoor-to-Indoor Multicarrier Transmission Shared UE-Side Distributed Antenna Systems | |
902 | Multiobjective Resource Allocation Secure Communication Cognitive Radio Networks With Wireless Information Power Transfer | |
4161 | Optimal Multiuser Scheduling Schemes Simultaneous Wireless Information Power Transfer | |
2600 | Application smart antenna technology simultaneous wireless information power transfer | |
1773 | Wireless Information Power Transfer Relay Systems With Multiple Antennas Interference | |
13504 | Relay Selection Simultaneous Information Transmission Wireless Energy Transfer : A Tradeoff Perspective | |
380 | Secure Massive MIMO transmission presence active eavesdropper | |
1011 | Artificial Noise Assisted Secure Transmission Under Training Feedback | |
GoDec | 11025 | Multiantenna Wireless Powered Communication With Cochannel Energy Information Transfer |
4331 | Distributed Energy Beamforming Simultaneous Wireless Information Power Transfer Two-Way Relay Channel | |
902 | Multiobjective Resource Allocation Secure Communication Cognitive Radio Networks With Wireless Information Power Transfer | |
8372 | Power Control Game Multisource Multirelay Cooperative Communication Systems With Quality-of-Service Constraint | |
13521 | Full-Duplex Wireless-Powered Communication Network With Energy Causality | |
10068 | Multi-Objective Optimization Robust Power Efficient Secure Full-Duplex Wireless Communication Systems | |
2394 | Energy Harvesting Two-Way OFDM Communications Hostile Jamming | |
13593 | Secure Green SWIPT Distributed Antenna Networks With Limited Backhaul Capacity | |
12880 | Robust Resource Allocation Enhance Physical Layer Security Systems With Full-Duplex Receivers : Active Adversary | |
566 | Resource Allocation Outdoor-to-Indoor Multicarrier Transmission Shared UE-Side Distributed Antenna Systems |
Tab.3 Comparison of papers recommended for researcher “Yisheng Zhong” by different methods
方法 | 文章编号 | 文章标题 |
---|---|---|
GoDec+ | 10068 | Multi-Objective Optimization Robust Power Efficient Secure Full-Duplex Wireless Communication Systems |
13593 | Secure Green SWIPT Distributed Antenna Networks With Limited Backhaul Capacity | |
566 | Resource Allocation Outdoor-to-Indoor Multicarrier Transmission Shared UE-Side Distributed Antenna Systems | |
902 | Multiobjective Resource Allocation Secure Communication Cognitive Radio Networks With Wireless Information Power Transfer | |
4161 | Optimal Multiuser Scheduling Schemes Simultaneous Wireless Information Power Transfer | |
2600 | Application smart antenna technology simultaneous wireless information power transfer | |
1773 | Wireless Information Power Transfer Relay Systems With Multiple Antennas Interference | |
13504 | Relay Selection Simultaneous Information Transmission Wireless Energy Transfer : A Tradeoff Perspective | |
380 | Secure Massive MIMO transmission presence active eavesdropper | |
1011 | Artificial Noise Assisted Secure Transmission Under Training Feedback | |
GoDec | 11025 | Multiantenna Wireless Powered Communication With Cochannel Energy Information Transfer |
4331 | Distributed Energy Beamforming Simultaneous Wireless Information Power Transfer Two-Way Relay Channel | |
902 | Multiobjective Resource Allocation Secure Communication Cognitive Radio Networks With Wireless Information Power Transfer | |
8372 | Power Control Game Multisource Multirelay Cooperative Communication Systems With Quality-of-Service Constraint | |
13521 | Full-Duplex Wireless-Powered Communication Network With Energy Causality | |
10068 | Multi-Objective Optimization Robust Power Efficient Secure Full-Duplex Wireless Communication Systems | |
2394 | Energy Harvesting Two-Way OFDM Communications Hostile Jamming | |
13593 | Secure Green SWIPT Distributed Antenna Networks With Limited Backhaul Capacity | |
12880 | Robust Resource Allocation Enhance Physical Layer Security Systems With Full-Duplex Receivers : Active Adversary | |
566 | Resource Allocation Outdoor-to-Indoor Multicarrier Transmission Shared UE-Side Distributed Antenna Systems |
1 | YANG C, SHI Q. An interval perturbation method for Singular Value Decomposition (SVD) with Unknown-But-Bounded (UBB) parameters[J]. Journal of Computational and Applied Mathematics, 2024, 436: No.115436. |
2 | STEWART G W. On the early history of the singular value decomposition [J]. SIAM Review, 1993, 35(4): 551-566. |
3 | SHI W, WANG L, QIN J. User embedding for rating prediction in SVD++-based collaborative filtering [J]. Symmetry, 2020, 12(1): No. 121. |
4 | FAN J, JI R, TIAN Y. Collaborative filtering recommendation algorithm based on improved biasSVD[C]// Proceedings of 6th International Conference on Control, Robotics and Cybernetics. Piscataway: IEEE, 2021: 297-300. |
5 | TO T L, McCOY J G, OSTRIKER N K, et al. PMF-seq: a highly scalable screening strategy for linking genetics to mitochondrial bioenergetics [J]. Nature Metabolism, 2024, 6(4): 687-696. |
6 | ZHOU T, TAO D. GoDec: randomized low-rank & sparse matrix decomposition in noisy case[C]// Proceedings of the 28th International Conference on Machine Learning. Madison, WI: Omnipress, 2011: 33-40. |
7 | CANDÈS E J, LI X, MA Y, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3): No.11. |
8 | McNEE S M, ALBERT I, COSLEY D, et al. On the recommending of citations for research papers[C]// Proceedings of the 2002 ACM Conference on Computer Supported Cooperative Work. New York: ACM, 2002: 116-125. |
9 | LI Y, WANG R, NAN G, et al. A personalized paper recommendation method considering diverse user preferences[J]. Decision Support Systems, 2021, 146: No.113546. |
10 | CHEN J, LIU Y, ZHAO S, et al. Citation recommendation based on weighted heterogeneous information network containing semantic linking [C]// Proceedings of the 2019 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2019: 31-36. |
11 | 张金柱,孙雯雯,仇蒙蒙. 融合异构网络表示学习与注意力机制的引文推荐研究[J]. 数据分析与知识发现, 2024, 8(10):14-27. |
ZHANG J Z, SUN W W, QIU M M. Citation recommendation using heterogeneous network representation learning and attention mechanism[J]. Data Analysis and Knowledge Discovery, 2024, 8(10):14-27. | |
12 | 樊海玮,鲁芯丝雨,张丽苗,等. 融合知识图谱和图注意力网络的引文推荐算法[J]. 计算机应用, 2023, 43(8): 2420-2425. |
FAN H W, LU X S Y, ZHANG L M, et al. Citation recommendation algorithm fusing knowledge graph and graph attention network[J]. Journal of Computer Applications, 2023, 43(8): 2420-2425. | |
13 | 祝婷. 融合网络表示学习与文本信息的学术文献推荐方法[J]. 科技情报, 2022, 8(3): 81-92. |
ZHU T. An academic paper recommendation method by network representation learning and text information[J]. Technology Intelligence Engineering, 2022, 8(3): 81-92. | |
14 | DU N, GUO J, WU C Q, et al. Recommendation of academic papers based on heterogeneous information networks[C]// Proceedings of the 17th IEEE/ACS International Conference on Computer Systems and Applications. Piscataway: IEEE, 2020: 1-6. |
15 | ZHAO Z L, HUANG L, WANG C D, et al. Low-rank and sparse matrix completion for recommendation[C]// Proceedings of the 2017 International Conference on Neural Information Processing, LNCS 10638. Cham: Springer, 2017: 3-13. |
16 | DAI T, GAO T, ZHU L, et al. Low-rank and sparse matrix factorization for scientific paper recommendation in heterogeneous network [J]. IEEE Access, 2018, 6: 59015-59030. |
17 | SCHAFER J B, FRANKOWSKI D, HERLOCKER J, et al. Collaborative filtering recommender systems[M]// BRUSILOVSKY P, KOBSA A, NEJDL W. The adaptive web: methods and strategies of web personalization, LNCS 4321. Berlin: Springer, 2007: 291-324. |
18 | YANG C, WEI B, WU J, et al. CARES: a ranking-oriented CADAL recommender system[C]// Proceedings of the 9th ACM/IEEE-CS Joint Conference on Digital libraries. New York: ACM, 2009: 203-212. |
19 | CARAGEA C, SILVESCU A, MITRA P, et al. Can’t see the forest for the trees? a citation recommendation system[C]// Proceedings of the 13th ACM/IEEE-CS Joint Conference on Digital libraries. New York: ACM, 2013: 111-114. |
20 | HARUNA K, AKMAR ISMAIL M, DAMIASIH D, et al. A collaborative approach for research paper recommender system[J]. PLoS ONE, 2017, 12(10): No.e0184516. |
21 | DAI T, ZHU L, CAI X, et al. Explore semantic topics and author communities for citation recommendation in bipartite bibliographic network[J]. Journal of Ambient Intelligence and Humanized Computing, 2018, 9(4): 957-975. |
22 | 郭贵冰. 推荐系统进展:方法与技术[M]. 北京:科学出版社, 2019:4. |
GUO G B. Recommendation systems progress: methods and techniques [M]. Beijing: Science Press, 2019: 4. | |
23 | WANG G, HE X, ISHUGA C I. HAR-SI: a novel hybrid article recommendation approach[J]. Knowledge-Based Systems, 2018, 148: 85-99. |
24 | SUN J, MA J, LIU Z, et al. Leveraging content and connections for scientific article recommendation in social computing contexts[J]. The Computer Journal, 2014, 57(9): 1331-1342. |
25 | SUGIYAMA K, KAN M Y. A comprehensive evaluation of scholarly paper recommendation using potential citation papers[J]. International Journal on Digital Libraries, 2015, 16(2): 91-109. |
26 | WANG C, BLEI D M. Collaborative topic modeling for recommending scientific articles[C]// Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2011: 448-456. |
27 | WANG J, ZHU L, DAI T, et al. Low-rank and sparse matrix factorization with prior relations for recommender systems[J]. Applied intelligence, 2021, 51: 3435-3449. |
28 | HE J, CHEN J, XU H, et al. Small target detection method based on low-rank sparse matrix factorization for side-scan sonar images[J]. Remote Sensing, 2023, 15(8): No.2054. |
29 | ZARMEHI N, AMINI A, MARVASTI F. Low rank and sparse decomposition for image and video applications[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 30(7): 2046-2056. |
30 | XIE T, LI S, SUN B. Hyperspectral images denoising via nonconvex regularized low-rank and sparse matrix decomposition[J]. IEEE Transactions on Image Processing, 2019, 29: 44-56. |
31 | CHEN C, CAI J, LIN W, et al. Surveillance video coding via low-rank and sparse decomposition[C]// Proceedings of the 20th ACM international conference on Multimedia. New York: ACM, 2012: 713-716. |
32 | NING X, KARYPIS G. SLIM: sparse linear methods for top-n recommender systems[C]// Proceedings of the 11th IEEE International Conference on Data Mining. Piscataway: IEEE, 2011: 497-506. |
33 | ZHOU T, TAO D. Bilateral random projections[C]// Proceedings of the 2012 IEEE International Symposium on Information Theory. Piscataway IEEE, 2012: 1286-1290. |
34 | BELTAGY I, LO K, COHAN A. SciBERT: a pretrained language model for scientific text [C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 3615-3620. |
35 | LU Y, YUAN M, LIU J, et al. Research on semantic representation and citation recommendation of scientific papers with multiple semantics fusion[J]. Scientometrics, 2023, 128(2): 1367-1393. |
36 | ROWEIS S. EM algorithms for PCA and SPCA [C]// Proceedings of the 11th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 1997: 626-632. |
37 | BREDIES K, LORENZ D A. Iterated hard shrinkage for minimization problems with sparsity constraints [J]. SIAM Journal on Scientific Computing, 2008, 30(2): 657-683. |
38 | PENG S, SUGIYAMA K, MINE T. SVD-GCN: a simplified graph convolution paradigm for recommendation [C]// Proceedings of the 31st ACM International Conference on Information and Knowledge Management. New York: ACM, 2022: 1625-1634. |
39 | AGHDAM M H, ANALOUI M, KABIRI P. Collaborative filtering using non-negative matrix factorisation[J]. Journal of Information Science, 2017, 43(4): 567-579 |
[1] | Kun SHENG, Zhongqing WANG. Synaesthesia metaphor analysis based on large language model and data augmentation [J]. Journal of Computer Applications, 2025, 45(3): 794-800. |
[2] | Beijing ZHOU, Hairong WANG, Yimeng WANG, Lisi ZHANG, He MA. Recommendation method using knowledge graph embedding propagation [J]. Journal of Computer Applications, 2024, 44(10): 3252-3259. |
[3] | Xiaohan YANG, Guosheng HAO, Xiehua ZHANG, Zihao YANG. Collaborative filtering algorithm based on collaborative training and Boosting [J]. Journal of Computer Applications, 2023, 43(10): 3136-3141. |
[4] | Yinying ZHOU, Mengyi ZHANG, Dunhui YU, Ming ZHU. Social recommendation combining trust implicit similarity and score similarity [J]. Journal of Computer Applications, 2022, 42(12): 3671-3678. |
[5] | Xi CHEN, Guang MEI, Jinjin ZHANG, Weisheng XU. Student grade prediction method based on knowledge graph and collaborative filtering [J]. Journal of Computer Applications, 2020, 40(2): 595-601. |
[6] | WEN Kai, ZHU Chuanliang. Regularized matrix decomposition recommendation model integrating social networks and interest correlation [J]. Journal of Computer Applications, 2018, 38(9): 2523-2528. |
[7] | GUO Yudong, GUO Zhigang, CHEN Gang, WEI Han. Recommendation method based on k nearest neighbors using data dimensionality reduction and exact Euclidean locality-sensitive hashing [J]. Journal of Computer Applications, 2017, 37(9): 2665-2670. |
[8] | YU Jinming, MENG Jun, WU Qiufeng. Item collaborative filtering recommendation algorithm based on improved similarity measure [J]. Journal of Computer Applications, 2017, 37(5): 1387-1391. |
[9] | JIN Liang, YU Jiong, YANG Xingyao, LU Liang, WANG Yuefei, GUO Binglei, Liao Bin. Video recommendation algorithm based on clustering and hierarchical model [J]. Journal of Computer Applications, 2017, 37(10): 2828-2833. |
[10] | LIU Jiangdong, LIANG Gang, FENG Cheng, ZHOU Hongyu. Collaborative filtering recommendation based on entropy and timeliness [J]. Journal of Computer Applications, 2016, 36(9): 2531-2534. |
[11] | ZHANG Nan, LIN Xiaoyong, SHI Shenghui. Collaborative filtering recommendation method based on improved heuristic similarity model [J]. Journal of Computer Applications, 2016, 36(8): 2246-2251. |
[12] | HUANG Yonghang, TANG Yong, LI Chunying, TANG Zhikang, LIU Jiwei. Academic paper recommendation model based on community partition [J]. Journal of Computer Applications, 2016, 36(5): 1279-1283. |
[13] | ZHENG Jie, QIAN Yurong, YANG Xingyao, HUANG Lan, MA Wanzhen. Collaborative filtering algorithm based on trust and item preference [J]. Journal of Computer Applications, 2016, 36(10): 2784-2788. |
[14] | WANG Fuqiang, PENG Furong, DING Xiaohuan, LU Jianfeng. Location-based asymmetric similarity for collaborative filtering recommendation algorithm [J]. Journal of Computer Applications, 2016, 36(1): 171-174. |
[15] | LIU Leijun, ZHU Meng, ZHANG Lei. Sparse trajectory prediction method based on iterative grid partition and entropy estimation [J]. Journal of Computer Applications, 2015, 35(11): 3161-3165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||