Journal of Computer Applications ›› 2020, Vol. 40 ›› Issue (2): 595-601.DOI: 10.11772/j.issn.1001-9081.2019071222
• Frontier & interdisciplinary applications • Previous Articles Next Articles
Xi CHEN1, Guang MEI1, Jinjin ZHANG2, Weisheng XU1,3()
Received:
2019-07-15
Revised:
2019-09-06
Accepted:
2019-09-06
Online:
2019-10-25
Published:
2020-02-10
Contact:
Weisheng XU
About author:
CHEN Xi, born in 1995, M. S. candidate. Her research interests include data mining, natural language processing.Supported by:
通讯作者:
许维胜
作者简介:
陈曦(1995—),女,安徽芜湖人,硕士研究生,主要研究方向:数据挖掘、自然语言处理基金资助:
CLC Number:
Xi CHEN, Guang MEI, Jinjin ZHANG, Weisheng XU. Student grade prediction method based on knowledge graph and collaborative filtering[J]. Journal of Computer Applications, 2020, 40(2): 595-601.
陈曦, 梅广, 张金金, 许维胜. 融合知识图谱和协同过滤的学生成绩预测方法[J]. 《计算机应用》唯一官方网站, 2020, 40(2): 595-601.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2019071222
实体名称 | 数量 | 实体名称 | 数量 |
---|---|---|---|
课程 | 5 378 | 参考书 | 2 063 |
院系 | 601 | 知识点 | 7 779 |
教材 | 2 187 | 教学模式 | 3 |
Tab. 1 Types and numbers of entities
实体名称 | 数量 | 实体名称 | 数量 |
---|---|---|---|
课程 | 5 378 | 参考书 | 2 063 |
院系 | 601 | 知识点 | 7 779 |
教材 | 2 187 | 教学模式 | 3 |
关系名称 | 数量 | 关系名称 | 数量 |
---|---|---|---|
院系-OFFER-课程 | 5 378 | 课程-TAKE-教材 | 2 581 |
课程-COVER-知识点 | 58 939 | 课程-REFER-参考书 | 2 063 |
课程-UTILIZE-教学模式 | 336 |
Tab. 2 Types and numbers of relationships
关系名称 | 数量 | 关系名称 | 数量 |
---|---|---|---|
院系-OFFER-课程 | 5 378 | 课程-TAKE-教材 | 2 581 |
课程-COVER-知识点 | 58 939 | 课程-REFER-参考书 | 2 063 |
课程-UTILIZE-教学模式 | 336 |
场景序号 | 算法名称 | RMSE | RMSE下降率/% | MAE | MAE下降率/% |
---|---|---|---|---|---|
1 | Normal Prediction | 1.175 1 | 0.931 7 | ||
MF | 0.889 8 | 0.678 8 | |||
Item-Based CF | 0.821 5 | 0.415 9 | |||
Same Community | 0.779 5 | 5.11 | 0.397 9 | 4.33 | |
Adamic Adar | 0.729 3 | 11.22 | 0.377 3 | 9.28 | |
Common Neighbor | 0.729 0 | 11.26 | 0.377 3 | 9.28 | |
Prefer Attachment | 0.857 6 | -4.39 | 0.477 1 | -14.72 | |
Resource Allocation | 0.729 8 | 11.16 | 0.378 1 | 9.09 | |
Total Neighbors | 0.845 9 | -2.97 | 0.470 2 | -13.06 | |
2 | Normal Prediction | 0.978 2 | 0.821 8 | ||
MF | 0.737 8 | 0.400 2 | |||
Item-Based CF | 0.688 4 | 0.351 5 | |||
Same Community | 0.651 9 | 5.30 | 0.333 1 | 5.23 | |
Adamic Adar | 0.626 6 | 8.98 | 0.318 6 | 9.36 | |
Common Neighbor | 0.625 9 | 9.08 | 0.318 3 | 9.45 | |
Prefer Attachment | 0.730 0 | -6.04 | 0.397 7 | -13.14 | |
Resource Allocation | 0.629 9 | 8.50 | 0.321 4 | 8.56 | |
Total Neighbors | 0.720 5 | -4.66 | 0.392 6 | -11.69 | |
3 | Normal Prediction | 0.887 3 | 0.790 6 | ||
MF | 0.681 8 | 0.417 6 | |||
Item-Based CF | 0.549 7 | 0.341 2 | |||
Same Community | 0.584 2 | -6.28 | 0.384 3 | -12.63 | |
Adamic Adar | 0.529 6 | 3.66 | 0.331 4 | 2.87 | |
Common Neighbor | 0.531 6 | 3.29 | 0.332 1 | 2.67 | |
Prefer Attachment | 0.601 8 | -9.48 | 0.367 6 | -7.74 | |
Resource Allocation | 0.593 5 | -7.97 | 0.360 6 | -5.69 | |
Total Neighbors | 0.551 8 | -0.38 | 0.339 6 | 0.47 |
Tab. 3 Performance of neighbor-based algorithms in multiple scenarios
场景序号 | 算法名称 | RMSE | RMSE下降率/% | MAE | MAE下降率/% |
---|---|---|---|---|---|
1 | Normal Prediction | 1.175 1 | 0.931 7 | ||
MF | 0.889 8 | 0.678 8 | |||
Item-Based CF | 0.821 5 | 0.415 9 | |||
Same Community | 0.779 5 | 5.11 | 0.397 9 | 4.33 | |
Adamic Adar | 0.729 3 | 11.22 | 0.377 3 | 9.28 | |
Common Neighbor | 0.729 0 | 11.26 | 0.377 3 | 9.28 | |
Prefer Attachment | 0.857 6 | -4.39 | 0.477 1 | -14.72 | |
Resource Allocation | 0.729 8 | 11.16 | 0.378 1 | 9.09 | |
Total Neighbors | 0.845 9 | -2.97 | 0.470 2 | -13.06 | |
2 | Normal Prediction | 0.978 2 | 0.821 8 | ||
MF | 0.737 8 | 0.400 2 | |||
Item-Based CF | 0.688 4 | 0.351 5 | |||
Same Community | 0.651 9 | 5.30 | 0.333 1 | 5.23 | |
Adamic Adar | 0.626 6 | 8.98 | 0.318 6 | 9.36 | |
Common Neighbor | 0.625 9 | 9.08 | 0.318 3 | 9.45 | |
Prefer Attachment | 0.730 0 | -6.04 | 0.397 7 | -13.14 | |
Resource Allocation | 0.629 9 | 8.50 | 0.321 4 | 8.56 | |
Total Neighbors | 0.720 5 | -4.66 | 0.392 6 | -11.69 | |
3 | Normal Prediction | 0.887 3 | 0.790 6 | ||
MF | 0.681 8 | 0.417 6 | |||
Item-Based CF | 0.549 7 | 0.341 2 | |||
Same Community | 0.584 2 | -6.28 | 0.384 3 | -12.63 | |
Adamic Adar | 0.529 6 | 3.66 | 0.331 4 | 2.87 | |
Common Neighbor | 0.531 6 | 3.29 | 0.332 1 | 2.67 | |
Prefer Attachment | 0.601 8 | -9.48 | 0.367 6 | -7.74 | |
Resource Allocation | 0.593 5 | -7.97 | 0.360 6 | -5.69 | |
Total Neighbors | 0.551 8 | -0.38 | 0.339 6 | 0.47 |
方法 | MRR | Hit@10/% | ||
---|---|---|---|---|
训练集 | 测试集 | 训练集 | 测试集 | |
TransE | 0.196 2 | 0.146 2 | 90.00 | 69.80 |
DistMult | 0.754 1 | 0.499 2 | 98.00 | 84.65 |
Tab. 4 Evaluation of TransE and DistMult
方法 | MRR | Hit@10/% | ||
---|---|---|---|---|
训练集 | 测试集 | 训练集 | 测试集 | |
TransE | 0.196 2 | 0.146 2 | 90.00 | 69.80 |
DistMult | 0.754 1 | 0.499 2 | 98.00 | 84.65 |
场景序号 | 算法名称 | RMSE | RMSE下降率/% | MAE | MAE下降率/% |
---|---|---|---|---|---|
1 | Normal Prediction | 1.175 1 | 0.931 7 | ||
MF | 0.889 8 | 0.678 8 | |||
Item-Based CF | 0.821 5 | 0.415 9 | |||
TransE | 0.677 3 | 17.55 | 0.368 5 | 11.40 | |
DistMult | 0.771 3 | 6.11 | 0.401 3 | 3.51 | |
2 | Normal Prediction | 0.978 2 | 0.821 8 | ||
MF | 0.737 8 | 0.400 2 | |||
Item-Based CF | 0.688 4 | 0.351 5 | |||
TransE | 0.592 0 | 14.00 | 0.312 6 | 11.07 | |
DistMult | 0.655 9 | 4.72 | 0.331 9 | 5.58 | |
3 | Normal Prediction | 0.887 3 | 0.790 6 | ||
MF | 0.681 8 | 0.417 6 | |||
Item-Based CF | 0.549 7 | 0.341 2 | |||
TransE | 0.521 8 | 5.08 | 0.319 6 | 6.33 | |
DistMult | 0.523 7 | 4.73 | 0.300 5 | 5.98 |
Tab. 5 Performance of KG representation-based algorithms in multiple scenarios
场景序号 | 算法名称 | RMSE | RMSE下降率/% | MAE | MAE下降率/% |
---|---|---|---|---|---|
1 | Normal Prediction | 1.175 1 | 0.931 7 | ||
MF | 0.889 8 | 0.678 8 | |||
Item-Based CF | 0.821 5 | 0.415 9 | |||
TransE | 0.677 3 | 17.55 | 0.368 5 | 11.40 | |
DistMult | 0.771 3 | 6.11 | 0.401 3 | 3.51 | |
2 | Normal Prediction | 0.978 2 | 0.821 8 | ||
MF | 0.737 8 | 0.400 2 | |||
Item-Based CF | 0.688 4 | 0.351 5 | |||
TransE | 0.592 0 | 14.00 | 0.312 6 | 11.07 | |
DistMult | 0.655 9 | 4.72 | 0.331 9 | 5.58 | |
3 | Normal Prediction | 0.887 3 | 0.790 6 | ||
MF | 0.681 8 | 0.417 6 | |||
Item-Based CF | 0.549 7 | 0.341 2 | |||
TransE | 0.521 8 | 5.08 | 0.319 6 | 6.33 | |
DistMult | 0.523 7 | 4.73 | 0.300 5 | 5.98 |
1 | MCFARLAND J, HUSSAR B, ZHANG J, et al. The condition of education 2019[EB/OL]. [2019-05-01]. ?pubid=2019144. |
2 | GRAYSON A, MILLER H, CLARKE D D. Identifying barriers to help-seeking: a qualitative analysis of students’ preparedness to seek help from tutors[J]. British Journal of Guidance and Counselling, 1998, 26(2): 237-253. 10.1080/03069889808259704 |
3 | ROMERO C, VENTURA S. Educational data mining: a survey from 1995 to 2005[J]. Expert Systems with Applications, 2007, 33(1): 135-146. 10.1016/j.eswa.2006.04.005 |
4 | CASTRO F, VELLIDO A, NEBOT À, et al. Applying data mining techniques to e-learning problems[M]// JAIN L C, TEDMAN R A, TEDMAN D K. Evolution of Teaching and Learning Paradigms in Intelligent Environment, SCI62. Berlin: Springer, 2007: 183-221. |
5 | MEIER Y, XU J, ATAN O, et al. Predicting grades[J]. IEEE Transactions on Signal Processing, 2016, 64(4): 959-972. 10.1109/tsp.2015.2496278 |
6 | MÁRQUEZ-VERA C, ROMERO C, VENTURA S. Predicting school failure using data mining[C]// Proceedings of the 4th International Conference on Educational Data Mining. Eindhoven, Netherlands: International Educational Data Mining Society, 2011:271-276. |
7 | 刘志妩. 基于决策树算法的学生成绩的预测分析[J]. 计算机应用与软件, 2012, 29(11):312-314, 330. |
LIU Z W. Forecast and analysis of students’ marks based on decision tree algorithm[J]. Computer Applications and Software, 2012, 29(11): 312-314, 330. | |
8 | BURMAN I, SOM S. Predicting students academic performance using support vector machine[C]// Proceedings of the 2019 Amity International Conference on Artificial Intelligence. Piscataway: IEEE, 2019: 756-759. 10.1109/aicai.2019.8701260 |
9 | CAZAREZ R L U, MARTIN C L. Neural networks for predicting student performance in online education[J]. IEEE Latin America Transactions, 2018, 16(7): 2053-2060. 10.1109/tla.2018.8447376 |
10 | 黄建明. 贝叶斯网络在学生成绩预测中的应用[J]. 计算机科学, 2012, 39(S3):280-282. 10.3969/j.issn.1002-137X.2012.z3.075 |
HUANG J M. Application of Bayesian network to predicting students’ achievement[J]. Computer Science, 2012, 39(11A): 280-282. 10.3969/j.issn.1002-137X.2012.z3.075 | |
11 | BYDŽOVSKÁ H. Are collaborative filtering methods suitable for student performance prediction?[C]// Proceedings of the 2015 Portuguese Conference on Artificial Intelligence, LNCS9273. Cham: Springer, 2015: 425-430. |
12 | BYDŽOVSKÁ H. A comparative analysis of techniques for predicting student performance[C]// Proceedings of the 2016 International Conference on Educational Data Mining. Raleigh, NC: International Educational Data Mining Society, 2016: 306-311. |
13 | HUANG L, WANG C, CHAO H, et al. A score prediction approach for optional course recommendation via cross-user-domain collaborative filtering[J]. IEEE Access, 2019, 7: 19550-19563. 10.1109/access.2019.2897979 |
14 | SWEENEY M, RANGWALA H, LESTER J, et al. Next-term student performance prediction: a recommender systems approach[EB/OL]. [2019-05-01]. . 10.1109/bigdata.2015.7363847 |
15 | ALMUTAIRI F M, SIDIROPOULOS N D, KARYPIS G. Context-aware recommendation-based learning analytics using tensor and coupled matrix factorization[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(5): 729-741. 10.1109/jstsp.2017.2705581 |
16 | ELBADRAWY A, POLYZOU A, REN Z, et al. Predicting student performance using personalized analytics[J]. Computer, 2016, 49(4): 61-69. 10.1109/mc.2016.119 |
17 | XU J, MOON K H, SCHAAR M VAN DER. A machine learning approach for tracking and predicting student performance in degree programs[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(5): 742-753. 10.1109/jstsp.2017.2692560 |
18 | MIHALCEA R, TARAU P. TextRank: bringing order into text[C]// Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2004: 404-411. 10.3115/1220355.1220517 |
19 | ADAMIC L A, ADAR E. Friends and neighbors on the Web[J]. Social Networks, 2003, 25(3): 211-230. 10.1016/s0378-8733(03)00009-1 |
20 | JEONG H, NÉDA Z, BARABÁSI A L. Measuring preferential attachment in evolving networks[J]. Europhysics Letters, 2003, 61(4): 567-572. 10.1209/epl/i2003-00166-9 |
21 | ZHOU T, LÜ L, ZHANG Y. Predicting missing links via local information[J]. The European Physical Journal B, 2009, 71(4): 623-630. 10.1140/epjb/e2009-00335-8 |
22 | BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the 2013 Conference on Neural Information Processing Systems. New York: ACM, 2013: 2787-2795. 10.1007/978-3-662-44848-9_28 |
23 | YANG B, YIH W T, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL]. [2019-05-01]. . |
24 | YANG Y, LIU H, CARBONELL J, et al. Concept graph learning from educational data[C]// Proceedings of the 8th ACM International Conference on Web Search and Data Mining. New York: ACM, 2015: 159-168. 10.1145/2684822.2685292 |
25 | LARRAÑAGA M, CONDE A, CALVO I, et al. Automatic generation of the domain module from electronic textbooks: method and validation[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(1): 69-82. 10.1109/tkde.2013.36 |
26 | SALTON G, BUCKLEY C. Term-weighting approaches in automatic text retrieval[J]. Information Processing and Management, 1988, 24(5): 513-523. 10.1016/0306-4573(88)90021-0 |
27 | 侯俊萌. 基于MOOC的高等教育知识图谱的构建[D]. 北京:北京邮电大学, 2017: 1-65. 10.7763/ijiet.2016.v6.672 |
HOU J M. Construction of higher education knowledge map based on MOOC[D]. Beijing: Beijing University of Posts and Telecommunications, 2017: 1-65. 10.7763/ijiet.2016.v6.672 | |
28 | CHEN P, LU Y, ZHENG V W, et al. KnowEdu: a system to construct knowledge graph for education[J]. IEEE Access, 2018, 6: 31553-31563. 10.1109/access.2018.2839607 |
29 | WANG S, LIANG C, WU Z, et al. Concept hierarchy extraction from textbooks[C]// Proceedings of the 2015 ACM Symposium on Document Engineering. New York: ACM, 2015: 147-156. 10.1145/2682571.2797062 |
30 | TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: International Machine Learning Society, 2016: 2071-2080. |
31 | PAGE L, BRIN S, MOTWANI R, et al. The PageRank citation ranking: bringing order to the Web[R]. Brisbane, Australia: Stanford InfoLab, 1999. |
32 | KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37. 10.1109/mc.2009.263 |
[1] | Jianjing LI, Guanfeng LI, Feizhou QIN, Weijun LI. Multi-relation approximate reasoning model based on uncertain knowledge graph embedding [J]. Journal of Computer Applications, 2024, 44(6): 1751-1759. |
[2] | Jie GUO, Jiayu LIN, Zuhong LIANG, Xiaobo LUO, Haitao SUN. Recommendation method based on knowledge‑awareness and cross-level contrastive learning [J]. Journal of Computer Applications, 2024, 44(4): 1121-1127. |
[3] | Beijing ZHOU, Hairong WANG, Yimeng WANG, Lisi ZHANG, He MA. Recommendation method using knowledge graph embedding propagation [J]. Journal of Computer Applications, 2024, 44(10): 3252-3259. |
[4] | Xiaohan YANG, Guosheng HAO, Xiehua ZHANG, Zihao YANG. Collaborative filtering algorithm based on collaborative training and Boosting [J]. Journal of Computer Applications, 2023, 43(10): 3136-3141. |
[5] | Heng CHEN, Siyi WANG, Zhengguang LI, Guanyu LI, Xin LIU. Capsule network knowledge graph embedding model based on relational memory [J]. Journal of Computer Applications, 2022, 42(7): 1985-1992. |
[6] | Wenjing JIANG, Xi XIONG, Zhongzhi LI, Binyong LI. Recommendation system based on non-sampling collaborative knowledge graph network [J]. Journal of Computer Applications, 2022, 42(4): 1057-1064. |
[7] | Junhua GU, Rui WANG, Ningning LI, Suqi ZHANG. Knowledge graph attention network fusing collaborative filtering information [J]. Journal of Computer Applications, 2022, 42(4): 1087-1092. |
[8] | TIAN Ling, ZHANG Jinchuan, ZHANG Jinhao, ZHOU Wangtao, ZHOU Xue. Knowledge graph survey: representation, construction, reasoning and knowledge hypergraph theory [J]. Journal of Computer Applications, 2021, 41(8): 2161-2186. |
[9] | LIU Huan, LI Xiaoge, HU Likun, HU Feixiong, WANG Penghua. Knowledge graph driven recommendation model of graph neural network [J]. Journal of Computer Applications, 2021, 41(7): 1865-1870. |
[10] | SUN Jianqiang, XU Shaohua. Knowledge reasoning method based on differentiable neural computer and Bayesian network [J]. Journal of Computer Applications, 2021, 41(2): 337-342. |
[11] | DONG Yongfeng, LIU Chao, WANG Liqin, LI Yingshuang. Relationship reasoning method combining multi-hop relationship path information [J]. Journal of Computer Applications, 2021, 41(10): 2799-2805. |
[12] | YU Jinming, MENG Jun, WU Qiufeng. Item collaborative filtering recommendation algorithm based on improved similarity measure [J]. Journal of Computer Applications, 2017, 37(5): 1387-1391. |
[13] | WANG Fuqiang, PENG Furong, DING Xiaohuan, LU Jianfeng. Location-based asymmetric similarity for collaborative filtering recommendation algorithm [J]. Journal of Computer Applications, 2016, 36(1): 171-174. |
[14] | WU Yunfeng FENG Jun SUN Xia LI Zhan FENG Hongwei HE Xiaowei. Online transfer-Bagging question recommendation based on hybrid classifiers [J]. Journal of Computer Applications, 2013, 33(07): 1950-1954. |
[15] | . User context based collaborative filtering recommendation [J]. Journal of Computer Applications, 2010, 30(4): 1076-1078. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||