Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (8): 2694-2703.DOI: 10.11772/j.issn.1001-9081.2024071068
• Multimedia computing and computer simulation • Previous Articles
Zhexu LIU1, Aobing ZHANG1, Zhiyong FAN2()
Received:
2024-07-31
Revised:
2024-10-08
Accepted:
2024-10-09
Online:
2024-11-19
Published:
2025-08-10
Contact:
Zhiyong FAN
About author:
LIU Zhexu, born in 1987, Ph. D., associate professor. His research interests include simulation verification and maintainability analysis and evaluation of aircraft complex system.Supported by:
通讯作者:
樊智勇
作者简介:
刘哲旭(1987—),男,辽宁葫芦岛人,副教授,博士,主要研究方向:飞机复杂系统仿真验证及维修性分析评估基金资助:
CLC Number:
Zhexu LIU, Aobing ZHANG, Zhiyong FAN. Layered solving method for virtual maintenance posture in narrow aircraft space[J]. Journal of Computer Applications, 2025, 45(8): 2694-2703.
刘哲旭, 张澳冰, 樊智勇. 飞机狭小空间虚拟维修姿态分层求解方法[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2694-2703.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024071068
体段名 | 百分 位数 | 测量 尺寸/mm | 质量/kg | 质心 测量起点 | 质心 位置/mm |
---|---|---|---|---|---|
头颈 | P5 | 210.0 | 4.48 | 头顶点 | 108.5 |
P50 | 231.0 | 5.16 | 117.8 | ||
躯干 | P5 | 512.0 | 22.91 | 颈椎点 | 266.3 |
P50 | 530.0 | 27.00 | 293.4 | ||
上臂 | P5 | 289.0 | 1.26 | 桡骨点 | 138.1 |
P50 | 316.0 | 1.46 | 163.3 | ||
前臂 | P5 | 209.0 | 0.65 | 桡骨茎突点 | 120.4 |
P50 | 239.0 | 0.75 | 136.6 | ||
手 | P5 | 171.0 | 0.33 | 中指指尖点 | 108.4 |
P50 | 184.0 | 0.38 | 114.2 | ||
大腿 | P5 | 424.0 | 7.73 | 胫骨点 | 231.9 |
P50 | 470.0 | 8.50 | 254.5 | ||
小腿 | P5 | 336.0 | 1.91 | 内踝点 | 204.0 |
P50 | 374.0 | 2.20 | 224.1 | ||
足 | P5 | 233.0 | 0.77 | 足底 | 36.2 |
P50 | 249.0 | 0.89 | 38.2 |
Tab. 1 Human parameters for men with human percentile of P5 and P50
体段名 | 百分 位数 | 测量 尺寸/mm | 质量/kg | 质心 测量起点 | 质心 位置/mm |
---|---|---|---|---|---|
头颈 | P5 | 210.0 | 4.48 | 头顶点 | 108.5 |
P50 | 231.0 | 5.16 | 117.8 | ||
躯干 | P5 | 512.0 | 22.91 | 颈椎点 | 266.3 |
P50 | 530.0 | 27.00 | 293.4 | ||
上臂 | P5 | 289.0 | 1.26 | 桡骨点 | 138.1 |
P50 | 316.0 | 1.46 | 163.3 | ||
前臂 | P5 | 209.0 | 0.65 | 桡骨茎突点 | 120.4 |
P50 | 239.0 | 0.75 | 136.6 | ||
手 | P5 | 171.0 | 0.33 | 中指指尖点 | 108.4 |
P50 | 184.0 | 0.38 | 114.2 | ||
大腿 | P5 | 424.0 | 7.73 | 胫骨点 | 231.9 |
P50 | 470.0 | 8.50 | 254.5 | ||
小腿 | P5 | 336.0 | 1.91 | 内踝点 | 204.0 |
P50 | 374.0 | 2.20 | 224.1 | ||
足 | P5 | 233.0 | 0.77 | 足底 | 36.2 |
P50 | 249.0 | 0.89 | 38.2 |
自由度角度 | 最大活动范围 | 最适活动范围 |
---|---|---|
θ1sh | -20.0~97.0 | 0~30.0 |
θ2sh | -18.0~80.0 | 0~25.0 |
θ3sh | -60.0~170.0 | -25.0~55.0 |
θ1el | 0~150.0 | 0~40.0,125.0~150.0 |
θ1wr | -117.0~77.0 | 60.0~77.0 |
θ2wr | -45.0~45.0 | -30.0~45.0 |
θ3wr | -85.0~100.0 | -50.0~75.0 |
θ1ne | -40.0~45.0 | -10.0~20.0 |
θ1wa | -30.0~90.0 | -10.0~45.0 |
θ1hi | -20.0~45.0 | -10.0~35.0 |
θ2hi | 0~120.0 | 0~80.0 |
θ1kn | -145.0~10.0 | -130.0~0 |
θ1an | -45.0~20.0 | -10.0~10.0 |
Tab. 2 Free rotating angles of each joint of human
自由度角度 | 最大活动范围 | 最适活动范围 |
---|---|---|
θ1sh | -20.0~97.0 | 0~30.0 |
θ2sh | -18.0~80.0 | 0~25.0 |
θ3sh | -60.0~170.0 | -25.0~55.0 |
θ1el | 0~150.0 | 0~40.0,125.0~150.0 |
θ1wr | -117.0~77.0 | 60.0~77.0 |
θ2wr | -45.0~45.0 | -30.0~45.0 |
θ3wr | -85.0~100.0 | -50.0~75.0 |
θ1ne | -40.0~45.0 | -10.0~20.0 |
θ1wa | -30.0~90.0 | -10.0~45.0 |
θ1hi | -20.0~45.0 | -10.0~35.0 |
θ2hi | 0~120.0 | 0~80.0 |
θ1kn | -145.0~10.0 | -130.0~0 |
θ1an | -45.0~20.0 | -10.0~10.0 |
方法 | 初始水平 距离/mm | 可达性 | 可视性 | 舒适度风险评分 | 评估结果 | ||||
---|---|---|---|---|---|---|---|---|---|
手臂 | 颈椎 | 腰椎 | 下肢 | 全身 | |||||
文献[ | 500 | 满足 | 满足 | 4 | 2 | 3 | 1 | 4 | 比较舒适 |
800 | 满足 | 满足 | 5 | 4 | 4 | 2 | 6 | 不舒服,亟需改进 | |
本文方法 | — | 满足 | 满足 | 4 | 1 | 3 | 1 | 3 | 比较舒适 |
Tab. 3 Evaluation results of virtual human posture with different initial distance
方法 | 初始水平 距离/mm | 可达性 | 可视性 | 舒适度风险评分 | 评估结果 | ||||
---|---|---|---|---|---|---|---|---|---|
手臂 | 颈椎 | 腰椎 | 下肢 | 全身 | |||||
文献[ | 500 | 满足 | 满足 | 4 | 2 | 3 | 1 | 4 | 比较舒适 |
800 | 满足 | 满足 | 5 | 4 | 4 | 2 | 6 | 不舒服,亟需改进 | |
本文方法 | — | 满足 | 满足 | 4 | 1 | 3 | 1 | 3 | 比较舒适 |
[1] | 焦庆龙,徐达. 关于虚拟人体维修作业姿态库设计研究[J]. 计算机仿真, 2019, 36(4):324-329, 444. |
JIAO Q L, XU D. Research on the design method of virtual human body maintenance posture examples[J]. Computer Simulation, 2019, 36(4):324-329, 444. | |
[2] | 王建鹏,秦文虎,孙立博. 基于生物力学的虚拟人运动控制及行走仿真[J]. 计算机辅助设计与图形学学报, 2018, 30(6):1110-1117. |
WANG J P, QIN W H, SUN L B. Motion control and walking simulation of virtual human based on biomechanics[J]. Journal of Computer-Aided Design and Computer Graphics, 2018, 30(6):1110-1117. | |
[3] | 武维维,叶林梅,邵晓东,等. 基于多目标遗传算法的虚拟人作业姿态仿真[J]. 计算机集成制造系统, 2019, 25(1):155-164. |
WU W W, YE L M, SHAO X D, et al. Working posture simulation method for virtual human based on multi-objective genetic algorithm[J]. Computer Integrated Manufacturing Systems, 2019, 25(1):155-164. | |
[4] | 罗明宇,骆晓萌,朱文敏,等. 船舶狭小空间虚拟人维修姿态建模技术[J]. 计算机应用, 2021, 41(8):2466-2472. |
LUO M Y, LUO X M, ZHU W M, et al. Modeling technology for maintenance posture of virtual human in narrow space of ship[J]. Journal of Computer Applications, 2021, 41(8):2466-2472. | |
[5] | NGUYEN T, BUI T, PHAM H. Using proposed optimization algorithm for solving inverse kinematics of human upper limb applying in rehabilitation robotic[J]. Artificial Intelligence Review, 2022, 55(1): 679-705. |
[6] | 郭庆,马欣辰,付宇. 民航机务维修工作的虚拟人姿态生成技术[J]. 计算机集成制造系统, 2023, 29(11):3582-3591. |
GUO Q, MA X C, FU Y. Virtual human posture generation technology for civil aviation aircraft maintenance[J]. Computer Integrated Manufacturing Systems, 2023, 29(11):3582-3591. | |
[7] | 李石磊,梁加红,吴冰,等. 虚拟人运动生成与控制技术综述[J]. 系统仿真学报, 2011, 23(9):1758-1771. |
LI S L, LIANG J H, WU B, et al. Survey of virtual character motion generation and control[J]. Journal of System Simulation, 2011, 23(9):1758-1771. | |
[8] | 武维维. 基于虚拟人的人机工效评估及装配作业仿真技术研究 [D]. 西安:西安电子科技大学, 2020. |
WU W W. Study on technologies for ergonomic assessment and virtual assembly based on virtual human[D]. Xi’an: Xidian University, 2020. | |
[9] | 霍伟. 机器人动力学与控制[M]. 北京:高等教育出版社, 2005. |
HUO W. Robot dynamics and control[M]. Beijing: Higher Education Press, 2005. | |
[10] | 杨宇盟. 虚拟人避障运动规划与装配操作动作库研究[D]. 武汉:华中科技大学, 2014. |
YANG Y M. Research on collision-free motion planning and assembly operation action library for virtual human[D]. Wuhan: Huazhong University of Science and Technology, 2014. | |
[11] | 蒋伟. 基于虚拟人的维修可达性仿真及评价技术研究[D]. 长沙:国防科学技术大学, 2009. |
JIANG W. Research on evaluation technique and maintenance reachability simulation based on virtual humans[D]. Changsha: National University of Defense Technology, 2009. | |
[12] | 何春华,方舟,李阳,等. 基于视野锥的维修可视性分析方法改进[J]. 中国舰船研究, 2020, 15(2):49-55. |
HE C H, FANG Z, LI Y, et al. Improvement of maintenance visibility analysis method based on human visual field cone[J]. Chinese Journal of Ship Research, 2020, 15(2):49-55. | |
[13] | 国防科学技术工业委员会. 军事装备和设施的人机工程设计准则: [S]. 北京:中国标准出版社, 1997: 1-5. |
Commission for Science, Technology and Industry for National Defense. Human engineering design criteria for military equipment and facilities: [S]. Beijing: Standards Press of China, 1997: 1-5. | |
[14] | 杨锋,袁修干. 基于舒适度最大化的人体运动控制[J]. 计算机辅助设计与图形学学报, 2005, 17(2):267-272. |
YANG F, YUAN X G. Computational simulation of human motion based on comfort level maximization[J]. Journal of Computer-Aided Design and Computer Graphics, 2005, 17(2):267-272. | |
[15] | 刘哲旭,薛丽,刘涛. 维修任务操作中人体手臂的舒适度分析[J]. 机械设计与研究, 2023, 39(4):45-49, 55. |
LIU Z X, XUE L, LIU T. Human arm comfort analysis method in maintenance task operation[J]. Machine Design and Research, 2023, 39(4):45-49, 55. | |
[16] | ZACHER I, BUBB H. Strength based discomfort model of posture and movement[J]. SAE Transactions, 2004, 113:87-92. |
[17] | PANDYA A K, HASSON S M, ALDRIDGE A M, et al. Correlation and prediction of dynamic human isolated joint strength from lean body mass[EB/OL]. [2024-06-12].. |
[18] | 丁皓,夏冬阳,丁思吉,等. 基于人体关节点的三维重心计算与验证方法[J]. 医用生物力学, 2024, 39(1):157-163. |
DING H, XIA D Y, DING S J, et al. Calculation and verification method of three-dimensional center of gravity based on human joint points[J]. Journal of Medical Biomechanics, 2024, 39(1):157-163. | |
[19] | YEUNG L F, CHENG K C, FONG C H, et al. Evaluation of the Microsoft Kinect as a clinical assessment tool of body sway[J]. Gait and Posture, 2014, 40(4): 532-538. |
[20] | 王蔚,冯亚琴,杨再兴,等. 基于体感交互设备的人体重心计算方法[J]. 数据采集与处理, 2018, 33(4):595-602. |
WANG W, FENG Y Q, YANG Z X, et al. Calculation method for human center of gravity based on somatosensory interaction[J]. Journal of Data Acquisition and Processing, 2018, 33(4):595-602. | |
[21] | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA‑Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. |
[22] | 王彬,向甜,吕艺东,等. 基于NSGA‑Ⅱ的自适应多尺度特征通道分组优化算法[J]. 计算机应用, 2023, 43(5): 1401-1408. |
WANG B, XIANG T, LYU Y D, et al. Adaptive multi-scale feature channel grouping optimization algorithm based on NSGA‑Ⅱ[J]. Journal of Computer Applications, 2023, 43(5): 1401-1408. | |
[23] | 朱文敏,骆晓萌,范秀敏,等. 基于完整可达域分析的虚拟人作业姿态生成方法[J]. 上海交通大学学报, 2022, 56(10):1409-1419. |
ZHU W M, LUO X M, FAN X M, et al. Working posture generation method for virtual human based on complete reachable region analysis[J]. Journal of Shanghai Jiao Tong University, 2022, 56(10):1409-1419. | |
[24] | 国家市场监督管理总局,国家标准化管理委员会. 中国成年人人体尺寸: [S]. 北京:中国标准出版社, 2023: 1-8. |
State Administration for Market Regulation, National Standardization Administration of China. Human dimensions of Chinese adults: [S]. Beijing: Standards Press of China, 2023: 1-8. | |
[25] | 中华人民共和国国家质量监督检验检疫总局,国家标准化管理委员会. 成年人人体惯性参数: [S]. 北京:中国标准出版社, 2004: 1-9. |
General Administration of Quality Supervision, Inspection and Quarantine of China, National Standardization Administration of China. Inertial parameters of adult human body: [S]. Beijing: Standards Press of China, 2004: 1-9. | |
[26] | 中国人民解放军总装备部. 军事装备和设施的人机工程设计手册: [S]. 北京:中国标准出版社, 2002: 1-7. |
General Armaments Department of the People’s Liberation Army. Human engineering design handbook for military equipment and facilities: [S]. Beijing: Standards Press of China, 2002: 1-7. | |
[27] | McATAMNEY L, CORLETT E N. RULA: a survey method for the investigation of work-related upper limb disorders[J]. Applied Ergonomics, 1993, 24(2): 91-99. |
[1] | Zhichao YUAN, Lei YANG, Jinglin TIAN, Xiaowei WEI, Kangshun LI. Dual-population dual-stage evolutionary algorithm for complex constrained multi-objective optimization problems [J]. Journal of Computer Applications, 2025, 45(8): 2656-2665. |
[2] | Ying TAN, Xinyu REN, Chaoli SUN, Sisi WANG. Two-stage infill sampling-based semi-supervised expensive multi-objective optimization algorithm [J]. Journal of Computer Applications, 2025, 45(5): 1605-1612. |
[3] | Tao JIANG, Zhenyu LIANG, Ran CHENG, Yaochu JIN. GPU-accelerated evolutionary optimization of multi-objective flow shop scheduling problems [J]. Journal of Computer Applications, 2024, 44(5): 1364-1371. |
[4] | Lin GAO, Yu ZHOU, Tak Wu KWONG. Evolutionary bi-level adaptive local feature selection [J]. Journal of Computer Applications, 2024, 44(5): 1408-1414. |
[5] | Ye TIAN, Jinjin CHEN, Xingyi ZHANG. Hybrid optimizer combining evolutionary computation and gradient descent for constrained multi-objective optimization [J]. Journal of Computer Applications, 2024, 44(5): 1386-1392. |
[6] | Kaiwen ZHAO, Peng WANG, Xiangrong TONG. Two-stage search-based constrained evolutionary multitasking optimization algorithm [J]. Journal of Computer Applications, 2024, 44(5): 1415-1422. |
[7] | Jianqiang LI, Zhou HE. Hybrid NSGA-Ⅱ for vehicle routing problem with multi-trip pickup and delivery [J]. Journal of Computer Applications, 2024, 44(4): 1187-1194. |
[8] | Yongjian MA, Xuhua SHI, Peiyao WANG. Constrained multi-objective evolutionary algorithm based on two-stage search and dynamic resource allocation [J]. Journal of Computer Applications, 2024, 44(1): 269-277. |
[9] | Saijuan XU, Zhenyu PEI, Jiawei LIN, Genggeng LIU. Constrained multi-objective evolutionary algorithm based on multi-stage search [J]. Journal of Computer Applications, 2023, 43(8): 2345-2351. |
[10] | Canghong JIN, Yuhua SHAO, Qinfang HE. Long-tail recommendation model based on adaptive group reranking [J]. Journal of Computer Applications, 2023, 43(4): 1122-1128. |
[11] | Junyan LIU, Feibo JIANG, Yubo PENG, Li DONG. Multi-objective optimization model for unmanned aerial vehicles trajectory based on decomposition and trajectory search [J]. Journal of Computer Applications, 2023, 43(12): 3806-3815. |
[12] | Chunfeng LIU, Zheng LI, Jufeng WANG. Multi-objective optimization of minicells in distributed factories [J]. Journal of Computer Applications, 2023, 43(12): 3824-3832. |
[13] | Erchao LI, Shenghui ZHANG. Dynamic multi-objective optimization algorithm based on adaptive prediction of new evaluation index [J]. Journal of Computer Applications, 2023, 43(10): 3178-3187. |
[14] | LI Xingjia, YANG Qiuhui, HONG Mei, PAN Chunxia, LIU Ruihang. Test case prioritization approach based on historical data and multi-objective optimization [J]. Journal of Computer Applications, 2023, 43(1): 221-226. |
[15] | MA Yanfang, ZHANG Wen, LI Zongmin, YAN Fang, GUO Lingyun. Two-echelon location-routing model and algorithm for waste recycling considering obnoxious effect [J]. Journal of Computer Applications, 2023, 43(1): 289-298. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||