Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (10): 3178-3187.DOI: 10.11772/j.issn.1001-9081.2022091453
Special Issue: 先进计算
• Advanced computing • Previous Articles Next Articles
Received:
2022-09-30
Revised:
2022-11-17
Accepted:
2022-11-21
Online:
2023-02-16
Published:
2023-10-10
Contact:
Erchao LI
About author:
ZHANG Shenghui, born in 1997, M. S. candidate. His research interests include dynamic multi-objective optimization.
Supported by:
通讯作者:
李二超
作者简介:
张生辉(1997—),男,甘肃武威人,硕士研究生,主要研究方向:动态多目标优化。
基金资助:
CLC Number:
Erchao LI, Shenghui ZHANG. Dynamic multi-objective optimization algorithm based on adaptive prediction of new evaluation index[J]. Journal of Computer Applications, 2023, 43(10): 3178-3187.
李二超, 张生辉. 基于新评价指标自适应预测的动态多目标优化算法[J]. 《计算机应用》唯一官方网站, 2023, 43(10): 3178-3187.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022091453
( | 初期 | 后期 | ||
---|---|---|---|---|
平均IGD | 平均SP | 平均IGD | 平均SP | |
(1,0.05) | 0.572 9 | 0.145 3 | 0.177 0 | 0.194 1 |
(1,0.15) | 0.689 3 | 0.127 0 | 0.220 9 | 0.157 4 |
(1,0.25) | 0.752 1 | 0.106 8 | 0.324 3 | 0.181 1 |
Tab. 1 Average IGD and SP values at different metric weights
( | 初期 | 后期 | ||
---|---|---|---|---|
平均IGD | 平均SP | 平均IGD | 平均SP | |
(1,0.05) | 0.572 9 | 0.145 3 | 0.177 0 | 0.194 1 |
(1,0.15) | 0.689 3 | 0.127 0 | 0.220 9 | 0.157 4 |
(1,0.25) | 0.752 1 | 0.106 8 | 0.324 3 | 0.181 1 |
测试函数 | DNSGA-Ⅱ-A | DNSGA-Ⅱ-B | PPS | NEI-APDMOA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 方差 | 性能 | 平均值 | 方差 | 性能 | 平均值 | 方差 | 性能 | 平均值 | 方差 | |
共计 | 6-/3~/0+ | 7-/2~/0+ | 9-/0~/0+ | ||||||||
FDA1 | 1.48E-01 | 8.51E-03 | - | 1.43E-01 | 9.89E-03 | - | 2.10E-01 | 1.73E-02 | - | 1.10E-01 | 8.05E-03 |
FDA2 | 5.24E-02 | 4.38E-03 | - | 5.16E-02 | 3.97E-03 | - | 7.80E-02 | 1.69E-03 | - | 1.99E-02 | 2.92E-03 |
FDA3 | 1.38E-01 | 9.46E-03 | - | 1.39E-01 | 1.26E-02 | - | 2.07E-01 | 2.53E-02 | - | 1.19E-01 | 8.44E-03 |
FDA4 | 6.65E-02 | 1.76E-03 | - | 6.23E-02 | 2.29E-03 | - | 8.61E-02 | 4.92E-03 | - | 6.03E-02 | 9.78E-04 |
FDA5 | 3.33E-02 | 1.84E-03 | ~ | 3.28E-02 | 7.41E-04 | ~ | 4.39E-02 | 2.42E-03 | - | 3.26E-02 | 6.74E-04 |
DMOP1 | 9.07E-02 | 1.74E-02 | - | 8.27E-02 | 1.89E-02 | - | 1.22E-01 | 2.90E-02 | - | 6.20E-02 | 5.54E-03 |
DMOP2 | 6.61E-02 | 3.36E-03 | ~ | 6.99E-02 | 5.48E-03 | - | 9.05E-02 | 9.85E-03 | - | 6.34E-02 | 5.14E-03 |
DTLZ1 | 2.52E-02 | 2.92E-04 | ~ | 2.57E-02 | 4.83E-04 | ~ | 2.58E-02 | 7.63E-04 | - | 2.51E-02 | 2.02E-04 |
DTLZ2 | 4.00E-02 | 1.62E-04 | - | 3.96E-02 | 8.57E-04 | - | 4.69E-02 | 3.08E-04 | - | 3.82E-02 | 7.87E-04 |
Tab. 2 Average IGD value statistics of four algorithms
测试函数 | DNSGA-Ⅱ-A | DNSGA-Ⅱ-B | PPS | NEI-APDMOA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 方差 | 性能 | 平均值 | 方差 | 性能 | 平均值 | 方差 | 性能 | 平均值 | 方差 | |
共计 | 6-/3~/0+ | 7-/2~/0+ | 9-/0~/0+ | ||||||||
FDA1 | 1.48E-01 | 8.51E-03 | - | 1.43E-01 | 9.89E-03 | - | 2.10E-01 | 1.73E-02 | - | 1.10E-01 | 8.05E-03 |
FDA2 | 5.24E-02 | 4.38E-03 | - | 5.16E-02 | 3.97E-03 | - | 7.80E-02 | 1.69E-03 | - | 1.99E-02 | 2.92E-03 |
FDA3 | 1.38E-01 | 9.46E-03 | - | 1.39E-01 | 1.26E-02 | - | 2.07E-01 | 2.53E-02 | - | 1.19E-01 | 8.44E-03 |
FDA4 | 6.65E-02 | 1.76E-03 | - | 6.23E-02 | 2.29E-03 | - | 8.61E-02 | 4.92E-03 | - | 6.03E-02 | 9.78E-04 |
FDA5 | 3.33E-02 | 1.84E-03 | ~ | 3.28E-02 | 7.41E-04 | ~ | 4.39E-02 | 2.42E-03 | - | 3.26E-02 | 6.74E-04 |
DMOP1 | 9.07E-02 | 1.74E-02 | - | 8.27E-02 | 1.89E-02 | - | 1.22E-01 | 2.90E-02 | - | 6.20E-02 | 5.54E-03 |
DMOP2 | 6.61E-02 | 3.36E-03 | ~ | 6.99E-02 | 5.48E-03 | - | 9.05E-02 | 9.85E-03 | - | 6.34E-02 | 5.14E-03 |
DTLZ1 | 2.52E-02 | 2.92E-04 | ~ | 2.57E-02 | 4.83E-04 | ~ | 2.58E-02 | 7.63E-04 | - | 2.51E-02 | 2.02E-04 |
DTLZ2 | 4.00E-02 | 1.62E-04 | - | 3.96E-02 | 8.57E-04 | - | 4.69E-02 | 3.08E-04 | - | 3.82E-02 | 7.87E-04 |
测试函数 | DNSGA-Ⅱ-A | DNSGA-Ⅱ-B | PPS | NEI-APDMOA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 方差 | 性能 | 平均值 | 方差 | 性能 | 平均值 | 方差 | 性能 | 平均值 | 方差 | |
共计 | 2-/4~/3+ | 2-/5~/2+ | 2-/3~/4+ | ||||||||
FDA1 | 1.80E-01 | 2.01E-02 | ~ | 1.85E-01 | 2.33E-02 | ~ | 1.91E-01 | 2.30E-02 | ~ | 1.76E-01 | 1.94E-02 |
FDA2 | 7.42E-01 | 2.14E-02 | + | 7.43E-01 | 1.71E-02 | + | 5.27E-01 | 4.53E-02 | + | 3.11E+00 | 1.69E-01 |
FDA3 | 1.59E-01 | 1.73E-02 | ~ | 1.61E-01 | 1.49E-02 | ~ | 1.31E-01 | 1.31E-01 | + | 1.53E-01 | 8.18E-03 |
FDA4 | 3.14E-01 | 1.56E-02 | + | 3.18E-01 | 2.40E-02 | ~ | 2.97E-01 | 2.20E-02 | + | 3.28E-01 | 1.20E-02 |
FDA5 | 3.84E-01 | 1.72E-02 | + | 3.83E-01 | 1.40E-02 | + | 4.02E-01 | 2.67E-02 | + | 1.02E+00 | 1.59E-01 |
DMOP1 | 3.48E-01 | 3.74E-02 | - | 3.61E-01 | 4.69E-02 | - | 4.79E-01 | 5.93E-02 | - | 2.90E-01 | 2.16E-02 |
DMOP2 | 3.42E-01 | 2.51E-02 | - | 3.45E-01 | 1.40E-02 | - | 3.57E-01 | 1.52E-02 | - | 2.87E-01 | 3.12E-02 |
DTLZ1 | 6.49E-01 | 1.78E-02 | ~ | 6.54E-01 | 1.74E-02 | ~ | 6.78E-01 | 2.02E-02 | ~ | 6.39E-01 | 8.52E-03 |
DTLZ2 | 7.63E-01 | 2.49E-02 | ~ | 7.61E-01 | 2.13E-02 | ~ | 7.72E-01 | 2.11E-02 | ~ | 7.66E-01 | 2.60E-03 |
Tab. 3 Average SP value statistics of four algorithms
测试函数 | DNSGA-Ⅱ-A | DNSGA-Ⅱ-B | PPS | NEI-APDMOA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 方差 | 性能 | 平均值 | 方差 | 性能 | 平均值 | 方差 | 性能 | 平均值 | 方差 | |
共计 | 2-/4~/3+ | 2-/5~/2+ | 2-/3~/4+ | ||||||||
FDA1 | 1.80E-01 | 2.01E-02 | ~ | 1.85E-01 | 2.33E-02 | ~ | 1.91E-01 | 2.30E-02 | ~ | 1.76E-01 | 1.94E-02 |
FDA2 | 7.42E-01 | 2.14E-02 | + | 7.43E-01 | 1.71E-02 | + | 5.27E-01 | 4.53E-02 | + | 3.11E+00 | 1.69E-01 |
FDA3 | 1.59E-01 | 1.73E-02 | ~ | 1.61E-01 | 1.49E-02 | ~ | 1.31E-01 | 1.31E-01 | + | 1.53E-01 | 8.18E-03 |
FDA4 | 3.14E-01 | 1.56E-02 | + | 3.18E-01 | 2.40E-02 | ~ | 2.97E-01 | 2.20E-02 | + | 3.28E-01 | 1.20E-02 |
FDA5 | 3.84E-01 | 1.72E-02 | + | 3.83E-01 | 1.40E-02 | + | 4.02E-01 | 2.67E-02 | + | 1.02E+00 | 1.59E-01 |
DMOP1 | 3.48E-01 | 3.74E-02 | - | 3.61E-01 | 4.69E-02 | - | 4.79E-01 | 5.93E-02 | - | 2.90E-01 | 2.16E-02 |
DMOP2 | 3.42E-01 | 2.51E-02 | - | 3.45E-01 | 1.40E-02 | - | 3.57E-01 | 1.52E-02 | - | 2.87E-01 | 3.12E-02 |
DTLZ1 | 6.49E-01 | 1.78E-02 | ~ | 6.54E-01 | 1.74E-02 | ~ | 6.78E-01 | 2.02E-02 | ~ | 6.39E-01 | 8.52E-03 |
DTLZ2 | 7.63E-01 | 2.49E-02 | ~ | 7.61E-01 | 2.13E-02 | ~ | 7.72E-01 | 2.11E-02 | ~ | 7.66E-01 | 2.60E-03 |
测试函数 | DNSGA-Ⅱ-A | DNSGA-Ⅱ-B | PPS | NEI-APDMOA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 方差 | 性能 | 平均值 | 方差 | 性能 | 平均值 | 方差 | 性能 | 平均值 | 方差 | |
共计 | 7-/1~/1+ | 7-/1~/1+ | 7-/2~/0+ | ||||||||
FDA1 | 1.14E-02 | 7.64E-04 | - | 1.08E-02 | 7.33E-04 | - | 1.65E-02 | 1.88E-03 | - | 8.89E-03 | 2.68E-03 |
FDA2 | 1.32E-03 | 7.36E-05 | + | 1.35E-03 | 8.25E-05 | + | 2.17E-03 | 3.75E-04 | ~ | 2.39E-03 | 1.39E-04 |
FDA3 | 1.21E-02 | 9.32E-04 | - | 1.18E-02 | 1.13E-03 | - | 2.00E-02 | 3.07E-03 | - | 1.02E-02 | 3.32E-04 |
FDA4 | 6.29E-03 | 1.59E-04 | - | 5.96E-03 | 1.99E-04 | - | 1.37E-02 | 1.32E-03 | - | 5.65E-03 | 3.17E-04 |
FDA5 | 5.52E-03 | 2.82E-04 | - | 5.42E-03 | 2.07E-04 | - | 8.08E-03 | 6.77E-04 | - | 4.93E-03 | 2.08E-04 |
DMOP1 | 1.62E-02 | 1.88E-03 | - | 1.49E-02 | 1.81E-03 | - | 1.80E-02 | 2.25E-03 | - | 9.74E-03 | 4.51E-04 |
DMOP2 | 7.02E-03 | 2.67E-04 | - | 7.08E-03 | 4.13E-04 | - | 9.37E-03 | 8.52E-04 | - | 6.10E-03 | 1.41E-04 |
DTLZ1 | 3.21E-03 | 1.18E-04 | - | 3.26E-03 | 1.56E-04 | - | 3.79E-03 | 9.07E-05 | - | 2.84E-03 | 1.03E-04 |
DTLZ2 | 9.35E-03 | 4.55E-04 | ~ | 9.27E-03 | 2.43E-04 | ~ | 1.14E-02 | 7.19E-04 | ~ | 9.20E-03 | 7.58E-05 |
Tab. 4 Average GD value statistics of four algorithms
测试函数 | DNSGA-Ⅱ-A | DNSGA-Ⅱ-B | PPS | NEI-APDMOA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 方差 | 性能 | 平均值 | 方差 | 性能 | 平均值 | 方差 | 性能 | 平均值 | 方差 | |
共计 | 7-/1~/1+ | 7-/1~/1+ | 7-/2~/0+ | ||||||||
FDA1 | 1.14E-02 | 7.64E-04 | - | 1.08E-02 | 7.33E-04 | - | 1.65E-02 | 1.88E-03 | - | 8.89E-03 | 2.68E-03 |
FDA2 | 1.32E-03 | 7.36E-05 | + | 1.35E-03 | 8.25E-05 | + | 2.17E-03 | 3.75E-04 | ~ | 2.39E-03 | 1.39E-04 |
FDA3 | 1.21E-02 | 9.32E-04 | - | 1.18E-02 | 1.13E-03 | - | 2.00E-02 | 3.07E-03 | - | 1.02E-02 | 3.32E-04 |
FDA4 | 6.29E-03 | 1.59E-04 | - | 5.96E-03 | 1.99E-04 | - | 1.37E-02 | 1.32E-03 | - | 5.65E-03 | 3.17E-04 |
FDA5 | 5.52E-03 | 2.82E-04 | - | 5.42E-03 | 2.07E-04 | - | 8.08E-03 | 6.77E-04 | - | 4.93E-03 | 2.08E-04 |
DMOP1 | 1.62E-02 | 1.88E-03 | - | 1.49E-02 | 1.81E-03 | - | 1.80E-02 | 2.25E-03 | - | 9.74E-03 | 4.51E-04 |
DMOP2 | 7.02E-03 | 2.67E-04 | - | 7.08E-03 | 4.13E-04 | - | 9.37E-03 | 8.52E-04 | - | 6.10E-03 | 1.41E-04 |
DTLZ1 | 3.21E-03 | 1.18E-04 | - | 3.26E-03 | 1.56E-04 | - | 3.79E-03 | 9.07E-05 | - | 2.84E-03 | 1.03E-04 |
DTLZ2 | 9.35E-03 | 4.55E-04 | ~ | 9.27E-03 | 2.43E-04 | ~ | 1.14E-02 | 7.19E-04 | ~ | 9.20E-03 | 7.58E-05 |
1 | ZHOU A, QU B Y, LI H, et al. Multiobjective evolutionary algorithms: a survey of the state of the art[J]. Swarm and Evolutionary Computation, 2011, 1(1):32-49. 10.1016/j.swevo.2011.03.001 |
2 | 刘若辰,李建霞,刘静,等. 动态多目标优化研究综述[J]. 计算机学报, 2020, 43(7):1246-1278. 10.11897/SP.J.1016.2020.01246 |
LIU R C, LI J X, LIU J, et al. A survey on dynamic multi-objective optimization[J]. Chinese Journal of Computers, 2020, 43(7):1246-1278. 10.11897/SP.J.1016.2020.01246 | |
3 | RUAN G, YU G, ZHENG J, et al. The effect of diversity maintenance on prediction in dynamic multi-objective optimization[J]. Applied Soft Computing, 2017, 58: 631-647. 10.1016/j.asoc.2017.05.008 |
4 | MURUGANANTHAM A, TAN K C, VADAKKEPAT P. Evolutionary dynamic multiobjective optimization via Kalman filter prediction[J]. IEEE Transactions on Cybernetics, 2016, 46(12): 2862-2873. 10.1109/tcyb.2015.2490738 |
5 | DEB K, RAO N U B, KARTHIK S. Dynamic multi-objective optimization and decision-making using modified NSGA-Ⅱ: a case study on hydro-thermal power scheduling[C]// Proceedings of the 2007 International Conference on Evolutionary Multi-Criterion Optimization, LNCS 4403. Berlin: Springer, 2007: 803-817. |
6 | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. 10.1109/4235.996017 |
7 | AZEVEDO C R B, ARAÚJO A F R. Generalized immigration schemes for dynamic evolutionary multiobjective optimization[C]// Proceedings of the 2011 IEEE Congress of Evolutionary Computation. Piscataway: IEEE, 2011: 2033-2040. 10.1109/cec.2011.5949865 |
8 | SAHMOUD S, TOPCUOGLU H R. A memory-based NSGA-Ⅱ algorithm for dynamic multi-objective optimization problems[C]// Proceedings of the 2016 European Conference on the Applications of Evolutionary Computation, LNCS 9598. Cham: Springer, 2016: 296-310. |
9 | JIANG M, WANG Z, QIU L, et al. A fast dynamic evolutionary multiobjective algorithm via manifold transfer learning[J]. IEEE Transactions on Cybernetics, 2021, 51(7): 3417-3428. 10.1109/tcyb.2020.2989465 |
10 | CAO L, XU L, GOODMAN E D, et al. Evolutionary dynamic multiobjective optimization assisted by a support vector regression predictor[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(2): 305-319. 10.1109/tevc.2019.2925722 |
11 | RONG M, GONG D, PEDRYCZ W, et al. A multimodel prediction method for dynamic multiobjective evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(2): 290-304. 10.1109/tevc.2019.2925358 |
12 | WANG C, YEN G G, JIANG M. A grey prediction-based evolutionary algorithm for dynamic multiobjective optimization[J]. Swarm and Evolutionary Computation, 2020, 56: No.100695. 10.1016/j.swevo.2020.100695 |
13 | ZHAO Q, YAN B, SHI Y, et al. Evolutionary dynamic multiobjective optimization via learning from historical search process[J]. IEEE Transactions on Cybernetics, 2022, 52(7): 6119-6130. 10.1109/tcyb.2021.3059252 |
14 | GONG D, XU B, ZHANG Y, et al. A similarity-based cooperative co-evolutionary algorithm for dynamic interval multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(1): 142-156. 10.1109/tevc.2019.2912204 |
15 | FENG L, ZHOU W, LIU W, et al. Solving dynamic multiobjective problem via autoencoding evolutionary search[J]. IEEE Transactions on Cybernetics, 2022, 52(5): 2649-2662. 10.1109/tcyb.2020.3017017 |
16 | ZHANG Q, YANG S, JIANG S, et al. Novel prediction strategies for dynamic multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(2): 260-274. 10.1109/tevc.2019.2922834 |
17 | SAHMOUD S, TOPCUOGLU H R. Sensor-based change detection schemes for dynamic multi-objective optimization problems[C]// Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence. Piscataway: IEEE, 2016: 1-8. 10.1109/ssci.2016.7849963 |
18 | RICHTER H. Detecting change in dynamic fitness landscapes[C]// Proceedings of the 2009 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2009: 1613-1620. 10.1109/cec.2009.4983135 |
19 | JIANG S, YANG S. A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(1):65-82. 10.1109/tevc.2016.2574621 |
20 | XU B, ZHANG Y, GONG D, et al. Environment sensitivity-based cooperative co-evolutionary algorithms for dynamic multi-objective optimization[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15(6): 1877-1890. 10.1109/tcbb.2017.2652453 |
21 | GOH C K, TAN K C. A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(1):103-127. 10.1109/tevc.2008.920671 |
22 | DEB K, THIELE L, LAUMANNS M, et al. Scalable test problems for evolutionary multiobjective optimization[M]// ABRAHAM A, JAIN L, GOLDBERG R. Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, AI&KP. London: Springer, 2005: 105-145. 10.1007/1-84628-137-7 |
23 | ZHOU A, JIN Y, ZHANG Q. A population prediction strategy for evolutionary dynamic multiobjective optimization[J]. IEEE Transactions on Cybernetics, 2014, 44(1): 40-53. 10.1109/tcyb.2013.2245892 |
24 | FARINA M, DEB K, AMATO P. Dynamic multiobjective optimization problems: test cases, approximations, and applications[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(5):425-442. 10.1109/tevc.2004.831456 |
25 | DENG H, YEH C H, WILLIS R J. Inter-company comparison using modified TOPSIS with objective weights[J]. Computers and Operations Research, 2000, 27(10):963-973. 10.1016/s0305-0548(99)00069-6 |
26 | 何春雄,龙卫江,朱锋峰. 概率论与数理统计[M]. 北京:高等教育出版社, 2012:79-80. |
HE C X, LONG W J, ZHU F F. Probability Theory and Mathematical Statistics[M]. Beijing: Higher Education Press, 2012:79-80. | |
27 | CAO L, XU L, GOODMAN E D, et al. Decomposition-based evolutionary dynamic multiobjective optimization using a difference model[J]. Applied Soft Computing, 2019, 76: 473-490. 10.1016/j.asoc.2018.12.031 |
28 | 周永道,王会琦,吕王勇. 时间序列分析及应用[M]. 北京:高等教育出版社, 2015:69-87. |
ZHOU Y D, WANG H Q, LYU W Y. Time Series Analysis and Application[M]. Beijing: Higher Education Press, 2015:69-87. | |
29 | WANG C, YEN G G, ZOU F. A novel predictive method based on key points for dynamic multi-objective optimization[J]. Expert Systems with Applications, 2022, 190: No.116127. 10.1016/j.eswa.2021.116127 |
[1] | Ye TIAN, Jinjin CHEN, Xingyi ZHANG. Hybrid optimizer combining evolutionary computation and gradient descent for constrained multi-objective optimization [J]. Journal of Computer Applications, 2024, 44(5): 1386-1392. |
[2] | Kaiwen ZHAO, Peng WANG, Xiangrong TONG. Two-stage search-based constrained evolutionary multitasking optimization algorithm [J]. Journal of Computer Applications, 2024, 44(5): 1415-1422. |
[3] | Maojiang TIAN, Mingke CHEN, Wei DU, Wenli DU. Two-stage differential grouping method for large-scale overlapping problems [J]. Journal of Computer Applications, 2024, 44(5): 1348-1354. |
[4] | Wanting ZHANG, Wenli DU, Wei DU. Multi-timescale cooperative evolutionary algorithm for large-scale crude oil scheduling [J]. Journal of Computer Applications, 2024, 44(5): 1355-1363. |
[5] | Jiawei ZHAO, Xuefeng CHEN, Liang FENG, Yaqing HOU, Zexuan ZHU, Yew‑Soon Ong. Review of evolutionary multitasking from the perspective of optimization scenarios [J]. Journal of Computer Applications, 2024, 44(5): 1325-1337. |
[6] | Jianqiang LI, Zhou HE. Hybrid NSGA-Ⅱ for vehicle routing problem with multi-trip pickup and delivery [J]. Journal of Computer Applications, 2024, 44(4): 1187-1194. |
[7] | Kedi NIU, Min LI, Zhongyuan YAO, Xueming SI. Review of blockchain consensus algorithms for internet of things [J]. Journal of Computer Applications, 2024, 44(12): 3678-3687. |
[8] | Jie HUANG, Ruizi WU, Junli LI. Efficient adaptive robustness optimization algorithm for complex networks [J]. Journal of Computer Applications, 2024, 44(11): 3530-3539. |
[9] | Yongjian MA, Xuhua SHI, Peiyao WANG. Constrained multi-objective evolutionary algorithm based on two-stage search and dynamic resource allocation [J]. Journal of Computer Applications, 2024, 44(1): 269-277. |
[10] | Maozu GUO, Yazhe ZHANG, Lingling ZHAO. Electric vehicle charging station siting method based on spatial semantics and individual activities [J]. Journal of Computer Applications, 2023, 43(9): 2819-2827. |
[11] | Saijuan XU, Zhenyu PEI, Jiawei LIN, Genggeng LIU. Constrained multi-objective evolutionary algorithm based on multi-stage search [J]. Journal of Computer Applications, 2023, 43(8): 2345-2351. |
[12] | Erchao LI, Yanli CHENG. Dynamic multi-objective optimization algorithm based on weight vector clustering [J]. Journal of Computer Applications, 2023, 43(7): 2226-2236. |
[13] | Zhihui GAO, Meng HAN, Shujuan LIU, Ang LI, Dongliang MU. Survey of high utility itemset mining methods based on intelligent optimization algorithm [J]. Journal of Computer Applications, 2023, 43(6): 1676-1686. |
[14] | Bin WANG, Tian XIANG, Yidong LYU, Xiaofan WANG. Adaptive multi-scale feature channel grouping optimization algorithm based on NSGA‑Ⅱ [J]. Journal of Computer Applications, 2023, 43(5): 1401-1408. |
[15] | Hairong XUE, Xiaolong HAN. Integrated scheduling considering automated guided vehicle charging strategy based on improved NSGA-Ⅱ [J]. Journal of Computer Applications, 2023, 43(12): 3848-3855. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||