Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (9): 2817-2826.DOI: 10.11772/j.issn.1001-9081.2024081158

• Data science and technology • Previous Articles    

Genetic algorithm-based community hiding method in attribute networks

Bohan ZHANG1, Le LYU1, Junchang JING1, Dong LIU1,2,3()   

  1. 1.School of Computer and Information Engineering,Henan Normal University,Xinxiang Henan 453007,China
    2.Henan Provincial Key Laboratory of Artificial Intelligence and Personalized Learning in Education (Henan Normal University),Xinxiang Henan 453007,China
    3.Big Data Engineering Laboratory of Teaching Resources & Assessment of Education Quality of Henan Province (Henan Normal University),Xinxiang Henan 453007,China
  • Received:2024-08-16 Revised:2024-12-05 Accepted:2024-12-12 Online:2024-12-17 Published:2025-09-10
  • Contact: Dong LIU
  • About author:ZHANG Bohan, born in 1998, M. S. candidate. His research interests include social network analysis.
    LYU Le, born in 2000, M. S. candidate. His research interests include social network analysis.
    JING Junchang, born in 1990, Ph. D., lecturer. His research interests include social computing, multimedia content analysis.
  • Supported by:
    National Natural Science Foundation of China(62072160);Henan Provincial Science and Technology Research Program(242102211076)

基于遗传算法的属性网络社区隐藏方法

张博瀚1, 吕乐1, 荆军昌1, 刘栋1,2,3()   

  1. 1.河南师范大学 计算机与信息工程学院,河南 新乡 453007
    2.教育人工智能与个性化学习河南省重点实验室(河南师范大学),河南 新乡 453007
    3.教学资源与教育质量评估大数据河南省工程实验室(河南师范大学),河南 新乡 453007
  • 通讯作者: 刘栋
  • 作者简介:张博瀚(1998—),男,河南新乡人,硕士研究生,主要研究方向:社会网络分析
    吕乐(2000—),男,河南驻马店人,硕士研究生,主要研究方向:社会网络分析
    荆军昌(1990—),男,河南焦作人,讲师,博士,CCF会员,主要研究方向:社会计算、多媒体内容分析
  • 基金资助:
    国家自然科学基金资助项目(62072160);河南省科技攻关计划项目(242102211076)

Abstract:

To counteract community detection algorithms and thereby protect node privacy, community hiding methods have garnered more and more attention. However, current mainstream community hiding algorithms only focus on the network’s topological structure, neglecting the influence of node attributes on community structure, leading to bad performance on attribute networks. In response to these issues, an Attribute network Community hiding method based on Genetic algorithm (ACG) was proposed. In this method, network topological structure and node attributes were integrated, with the core of finding the optimal edge hiding strategy by optimizing a fitness function. In ACG, while minimizing hiding costs, maximizing modularity and attribute similarity was adopted as dual metric to select and perturb the set of edges with the greatest impact on community structure, thereby attacking community detection algorithms for attribute networks effectively. Experimental results demonstrate that without changing the total number of edges and attribute information, the proposed method counters mainstream attribute community detection methods effectively; compared with other community hiding methods, ACG has advantages in counteracting classic community detection algorithms on five attribute networks.

Key words: community hiding, genetic algorithm, attribute network, privacy protection, community detection, social network analysis

摘要:

为了对抗社区检测算法从而实现节点隐私保护,社区隐藏方法得到了越来越多的关注。然而,现有的主流社区隐藏算法仅关注网络的拓扑结构,忽略了节点属性对社区结构的影响,因此在属性网络上表现不佳。针对上述问题,提出一种基于遗传算法的属性网络社区隐藏方法(ACG)。该方法融合网络拓扑结构和节点属性,它的核心在于通过优化适应度函数找到最优的边隐藏策略。ACG在追求最小化隐藏成本的同时,将最大化模块度和属性相似度作为双重度量标准来选择并扰动对社区结构影响最大的边集合,从而实现对属性网络社区检测算法的有效攻击。实验结果表明,在不改变边总数和属性信息的前提下,所提方法有效地对抗了主流的属性社区检测方法;与其他社区隐藏方法相比,ACG在5个属性网络上对抗经典社区检测算法具有优势。

关键词: 社区隐藏, 遗传算法, 属性网络, 隐私保护, 社区检测, 社会网络分析

CLC Number: