Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (9): 2817-2826.DOI: 10.11772/j.issn.1001-9081.2024081158
• Data science and technology • Previous Articles
Bohan ZHANG1, Le LYU1, Junchang JING1, Dong LIU1,2,3()
Received:
2024-08-16
Revised:
2024-12-05
Accepted:
2024-12-12
Online:
2024-12-17
Published:
2025-09-10
Contact:
Dong LIU
About author:
ZHANG Bohan, born in 1998, M. S. candidate. His research interests include social network analysis.Supported by:
通讯作者:
刘栋
作者简介:
张博瀚(1998—),男,河南新乡人,硕士研究生,主要研究方向:社会网络分析基金资助:
CLC Number:
Bohan ZHANG, Le LYU, Junchang JING, Dong LIU. Genetic algorithm-based community hiding method in attribute networks[J]. Journal of Computer Applications, 2025, 45(9): 2817-2826.
张博瀚, 吕乐, 荆军昌, 刘栋. 基于遗传算法的属性网络社区隐藏方法[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2817-2826.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024081158
社区隐藏算法 | 数据集 | 被攻击的算法 |
---|---|---|
DIFFUSER | 权重网络 | 经典网络社区检测算法 |
ATTSAFDEC | 权重网络 | 经典网络社区检测算法 |
HC-SBM | 拓扑网络 | 经典网络社区检测算法 |
LSHA | 拓扑网络 | 经典网络社区检测算法 |
ACG | 属性网络 | 属性网络社区检测算法 |
Tab. 1 Comparison of ACG with existing community hiding algorithms
社区隐藏算法 | 数据集 | 被攻击的算法 |
---|---|---|
DIFFUSER | 权重网络 | 经典网络社区检测算法 |
ATTSAFDEC | 权重网络 | 经典网络社区检测算法 |
HC-SBM | 拓扑网络 | 经典网络社区检测算法 |
LSHA | 拓扑网络 | 经典网络社区检测算法 |
ACG | 属性网络 | 属性网络社区检测算法 |
符号 | 描述 |
---|---|
G/G' | 原始网络/隐藏后的网络 |
V/V' | 原始节点集合/隐藏后的节点集合 |
E/E' | 原始边集合/隐藏后的边集合 |
原始属性集合/隐藏后的属性集合 | |
C/C' | 原始社区/隐藏后的社区 |
AD | 社区检测算法 |
β | 修改边数的预算 |
E+ | 在不同社区之间添加边 |
E- | 在同一社区内删除边 |
f | 适应度函数 |
Pc | 交叉概率 |
Pm | 突变概率 |
Tab. 2 Symbolic representation
符号 | 描述 |
---|---|
G/G' | 原始网络/隐藏后的网络 |
V/V' | 原始节点集合/隐藏后的节点集合 |
E/E' | 原始边集合/隐藏后的边集合 |
原始属性集合/隐藏后的属性集合 | |
C/C' | 原始社区/隐藏后的社区 |
AD | 社区检测算法 |
β | 修改边数的预算 |
E+ | 在不同社区之间添加边 |
E- | 在同一社区内删除边 |
f | 适应度函数 |
Pc | 交叉概率 |
Pm | 突变概率 |
数据集 | 节点数 | 边数 | 属性数 | 社区数 |
---|---|---|---|---|
Cora | 2 708 | 5 429 | 1 433 | 7 |
WebKB | 877 | 1 608 | 1 703 | 5 |
CiteSeer | 3 312 | 4 732 | 3 703 | 6 |
Terrorists | 851 | 8 592 | 1 224 | 4 |
TerrAtt | 1 293 | 3 743 | 106 | 6 |
Tab. 3 Datasets used in experiments
数据集 | 节点数 | 边数 | 属性数 | 社区数 |
---|---|---|---|---|
Cora | 2 708 | 5 429 | 1 433 | 7 |
WebKB | 877 | 1 608 | 1 703 | 5 |
CiteSeer | 3 312 | 4 732 | 3 703 | 6 |
Terrorists | 851 | 8 592 | 1 224 | 4 |
TerrAtt | 1 293 | 3 743 | 106 | 6 |
检测 算法 | 度量 指标 | 隐藏 算法 | β=1% | β=2% | β=3% | β=4% | β=5% | 检测 算法 | 度量 指标 | 隐藏 算法 | β=1% | β=2% | β=3% | β=4% | β=5% |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SAC | NMI | RAT | 0.862 | 0.844 | 0.794 | 0.805 | 0.806 | ANCA | NMI | RAT | 0.793 | 0.675 | 0.631 | 0.573 | 0.563 |
ACG | 0.831 | 0.827 | 0.782 | 0.767 | 0.738 | ACG | 0.712 | 0.645 | 0.544 | 0.580 | 0.572 | ||||
ARI | RAT | 0.845 | 0.801 | 0.754 | 0.748 | 0.726 | ARI | RAT | 0.788 | 0.653 | 0.564 | 0.480 | 0.452 | ||
ACG | 0.787 | 0.750 | 0.722 | 0.713 | 0.694 | ACG | 0.589 | 0.532 | 0.440 | 0.462 | 0.478 | ||||
Jaccard | RAT | 0.820 | 0.796 | 0.747 | 0.732 | 0.711 | Jaccard | RAT | 0.782 | 0.664 | 0.569 | 0.495 | 0.475 | ||
ACG | 0.783 | 0.745 | 0.710 | 0.712 | 0.687 | ACG | 0.593 | 0.537 | 0.455 | 0.457 | 0.471 | ||||
Inc-Cluster | NMI | RAT | 0.894 | 0.814 | 0.775 | 0.716 | 0.701 | CSM | NMI | RAT | 0.789 | 0.757 | 0.738 | 0.681 | 0.659 |
ACG | 0.727 | 0.735 | 0.670 | 0.579 | 0.575 | ACG | 0.726 | 0.701 | 0.661 | 0.679 | 0.648 | ||||
ARI | RAT | 0.935 | 0.866 | 0.826 | 0.785 | 0.709 | ARI | RAT | 0.819 | 0.762 | 0.777 | 0.743 | 0.720 | ||
ACG | 0.788 | 0.746 | 0.671 | 0.584 | 0.550 | ACG | 0.761 | 0.718 | 0.723 | 0.686 | 0.672 | ||||
Jaccard | RAT | 0.794 | 0.752 | 0.710 | 0.659 | 0.621 | Jaccard | RAT | 0.700 | 0.648 | 0.662 | 0.631 | 0.619 | ||
ACG | 0.684 | 0.621 | 0.565 | 0.483 | 0.402 | ACG | 0.645 | 0.620 | 0.625 | 0.577 | 0.567 |
Tab. 4 Comparison of hiding results between ACG and RAT on Cora dataset
检测 算法 | 度量 指标 | 隐藏 算法 | β=1% | β=2% | β=3% | β=4% | β=5% | 检测 算法 | 度量 指标 | 隐藏 算法 | β=1% | β=2% | β=3% | β=4% | β=5% |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SAC | NMI | RAT | 0.862 | 0.844 | 0.794 | 0.805 | 0.806 | ANCA | NMI | RAT | 0.793 | 0.675 | 0.631 | 0.573 | 0.563 |
ACG | 0.831 | 0.827 | 0.782 | 0.767 | 0.738 | ACG | 0.712 | 0.645 | 0.544 | 0.580 | 0.572 | ||||
ARI | RAT | 0.845 | 0.801 | 0.754 | 0.748 | 0.726 | ARI | RAT | 0.788 | 0.653 | 0.564 | 0.480 | 0.452 | ||
ACG | 0.787 | 0.750 | 0.722 | 0.713 | 0.694 | ACG | 0.589 | 0.532 | 0.440 | 0.462 | 0.478 | ||||
Jaccard | RAT | 0.820 | 0.796 | 0.747 | 0.732 | 0.711 | Jaccard | RAT | 0.782 | 0.664 | 0.569 | 0.495 | 0.475 | ||
ACG | 0.783 | 0.745 | 0.710 | 0.712 | 0.687 | ACG | 0.593 | 0.537 | 0.455 | 0.457 | 0.471 | ||||
Inc-Cluster | NMI | RAT | 0.894 | 0.814 | 0.775 | 0.716 | 0.701 | CSM | NMI | RAT | 0.789 | 0.757 | 0.738 | 0.681 | 0.659 |
ACG | 0.727 | 0.735 | 0.670 | 0.579 | 0.575 | ACG | 0.726 | 0.701 | 0.661 | 0.679 | 0.648 | ||||
ARI | RAT | 0.935 | 0.866 | 0.826 | 0.785 | 0.709 | ARI | RAT | 0.819 | 0.762 | 0.777 | 0.743 | 0.720 | ||
ACG | 0.788 | 0.746 | 0.671 | 0.584 | 0.550 | ACG | 0.761 | 0.718 | 0.723 | 0.686 | 0.672 | ||||
Jaccard | RAT | 0.794 | 0.752 | 0.710 | 0.659 | 0.621 | Jaccard | RAT | 0.700 | 0.648 | 0.662 | 0.631 | 0.619 | ||
ACG | 0.684 | 0.621 | 0.565 | 0.483 | 0.402 | ACG | 0.645 | 0.620 | 0.625 | 0.577 | 0.567 |
度量指标 | 数据集 | SAC | Inc-Cluster | ANCA | CSM | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β=1% | β=3% | β=5% | β=1% | β=3% | β=5% | β=1% | β=3% | β=5% | β=1% | β=3% | β=5% | ||
NMI | WebKB | 0.805 | 0.643 | 0.590 | 0.729 | 0.658 | 0.537 | 0.697 | 0.636 | 0.602 | 0.767 | 0.637 | 0.539 |
CiteSeer | 0.835 | 0.738 | 0.670 | 0.777 | 0.674 | 0.594 | 0.902 | 0.824 | 0.727 | 0.830 | 0.714 | 0.602 | |
Terrorists | 0.870 | 0.825 | 0.741 | 0.782 | 0.745 | 0.624 | 0.764 | 0.702 | 0.648 | 0.891 | 0.778 | 0.733 | |
TerrAtt | 0.865 | 0.842 | 0.716 | 0.880 | 0.752 | 0.749 | 0.887 | 0.718 | 0.580 | 0.851 | 0.627 | 0.516 | |
ARI | WebKB | 0.803 | 0.636 | 0.514 | 0.793 | 0.718 | 0.570 | 0.665 | 0.570 | 0.523 | 0.697 | 0.459 | 0.447 |
CiteSeer | 0.778 | 0.749 | 0.614 | 0.860 | 0.722 | 0.567 | 0.928 | 0.852 | 0.748 | 0.794 | 0.718 | 0.653 | |
Terrorists | 0.756 | 0.725 | 0.684 | 0.687 | 0.617 | 0.545 | 0.746 | 0.675 | 0.600 | 0.812 | 0.767 | 0.685 | |
TerrAtt | 0.886 | 0.809 | 0.629 | 0.879 | 0.726 | 0.712 | 0.914 | 0.722 | 0.489 | 0.889 | 0.669 | 0.551 | |
Jaccard | WebKB | 0.789 | 0.621 | 0.543 | 0.701 | 0.632 | 0.517 | 0.654 | 0.598 | 0.567 | 0.723 | 0.601 | 0.509 |
CiteSeer | 0.812 | 0.704 | 0.641 | 0.765 | 0.669 | 0.581 | 0.836 | 0.801 | 0.702 | 0.751 | 0.692 | 0.598 | |
Terrorists | 0.845 | 0.792 | 0.716 | 0.754 | 0.702 | 0.601 | 0.732 | 0.689 | 0.631 | 0.867 | 0.754 | 0.708 | |
TerrAtt | 0.851 | 0.823 | 0.698 | 0.845 | 0.731 | 0.724 | 0.762 | 0.691 | 0.567 | 0.721 | 0.609 | 0.531 |
Tab. 5 Hiding results of ACG on four attribute network datasets
度量指标 | 数据集 | SAC | Inc-Cluster | ANCA | CSM | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β=1% | β=3% | β=5% | β=1% | β=3% | β=5% | β=1% | β=3% | β=5% | β=1% | β=3% | β=5% | ||
NMI | WebKB | 0.805 | 0.643 | 0.590 | 0.729 | 0.658 | 0.537 | 0.697 | 0.636 | 0.602 | 0.767 | 0.637 | 0.539 |
CiteSeer | 0.835 | 0.738 | 0.670 | 0.777 | 0.674 | 0.594 | 0.902 | 0.824 | 0.727 | 0.830 | 0.714 | 0.602 | |
Terrorists | 0.870 | 0.825 | 0.741 | 0.782 | 0.745 | 0.624 | 0.764 | 0.702 | 0.648 | 0.891 | 0.778 | 0.733 | |
TerrAtt | 0.865 | 0.842 | 0.716 | 0.880 | 0.752 | 0.749 | 0.887 | 0.718 | 0.580 | 0.851 | 0.627 | 0.516 | |
ARI | WebKB | 0.803 | 0.636 | 0.514 | 0.793 | 0.718 | 0.570 | 0.665 | 0.570 | 0.523 | 0.697 | 0.459 | 0.447 |
CiteSeer | 0.778 | 0.749 | 0.614 | 0.860 | 0.722 | 0.567 | 0.928 | 0.852 | 0.748 | 0.794 | 0.718 | 0.653 | |
Terrorists | 0.756 | 0.725 | 0.684 | 0.687 | 0.617 | 0.545 | 0.746 | 0.675 | 0.600 | 0.812 | 0.767 | 0.685 | |
TerrAtt | 0.886 | 0.809 | 0.629 | 0.879 | 0.726 | 0.712 | 0.914 | 0.722 | 0.489 | 0.889 | 0.669 | 0.551 | |
Jaccard | WebKB | 0.789 | 0.621 | 0.543 | 0.701 | 0.632 | 0.517 | 0.654 | 0.598 | 0.567 | 0.723 | 0.601 | 0.509 |
CiteSeer | 0.812 | 0.704 | 0.641 | 0.765 | 0.669 | 0.581 | 0.836 | 0.801 | 0.702 | 0.751 | 0.692 | 0.598 | |
Terrorists | 0.845 | 0.792 | 0.716 | 0.754 | 0.702 | 0.601 | 0.732 | 0.689 | 0.631 | 0.867 | 0.754 | 0.708 | |
TerrAtt | 0.851 | 0.823 | 0.698 | 0.845 | 0.731 | 0.724 | 0.762 | 0.691 | 0.567 | 0.721 | 0.609 | 0.531 |
数据集 | 隐藏算法 | Louvain | Walktrap | LPA | Greedy | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β=1% | β=3% | β=5% | β=1% | β=3% | β=5% | β=1% | β=3% | β=5% | β=1% | β=3% | β=5% | ||
WebKB | ACG | 0.892 | 0.800 | 0.726 | 0.821 | 0.805 | 0.754 | 0.831 | 0.753 | 0.715 | 0.907 | 0.825 | 0.739 |
DIFFUSER | 0.914 | 0.889 | 0.853 | 0.905 | 0.851 | 0.817 | 0.937 | 0.893 | 0.853 | 0.934 | 0.901 | 0.857 | |
ATTSAFDEC | 0.942 | 0.906 | 0.826 | 0.897 | 0.860 | 0.791 | 0.919 | 0.873 | 0.834 | 0.918 | 0.879 | 0.855 | |
HC-SBM | 0.868 | 0.854 | 0.789 | 0.876 | 0.832 | 0.770 | 0.893 | 0.801 | 0.728 | 0.909 | 0.807 | 0.725 | |
LSHA | 0.894 | 0.819 | 0.759 | 0.963 | 0.893 | 0.796 | 0.835 | 0.779 | 0.749 | 0.972 | 0.847 | 0.817 | |
Cora | ACG | 0.828 | 0.744 | 0.630 | 0.831 | 0.797 | 0.746 | 0.849 | 0.836 | 0.829 | 0.855 | 0.786 | 0.724 |
DIFFUSER | 0.940 | 0.868 | 0.774 | 0.918 | 0.861 | 0.786 | 0.948 | 0.902 | 0.797 | 0.943 | 0.894 | 0.832 | |
ATTSAFDEC | 0.933 | 0.875 | 0.780 | 0.905 | 0.863 | 0.817 | 0.927 | 0.891 | 0.856 | 0.915 | 0.847 | 0.795 | |
HC-SBM | 0.854 | 0.763 | 0.655 | 0.876 | 0.782 | 0.729 | 0.864 | 0.847 | 0.771 | 0.878 | 0.801 | 0.748 | |
LSHA | 0.832 | 0.803 | 0.728 | 0.971 | 0.847 | 0.794 | 0.866 | 0.838 | 0.808 | 0.903 | 0.813 | 0.712 | |
CiteSeer | ACG | 0.908 | 0.851 | 0.784 | 0.915 | 0.859 | 0.811 | 0.923 | 0.884 | 0.852 | 0.908 | 0.849 | 0.784 |
DIFFUSER | 0.920 | 0.836 | 0.765 | 0.931 | 0.874 | 0.823 | 0.944 | 0.869 | 0.824 | 0.921 | 0.838 | 0.776 | |
ATTSAFDEC | 0.934 | 0.853 | 0.770 | 0.957 | 0.916 | 0.884 | 0.951 | 0.902 | 0.850 | 0.926 | 0.877 | 0.803 | |
HC-SBM | 0.921 | 0.876 | 0.802 | 0.928 | 0.894 | 0.837 | 0.946 | 0.901 | 0.869 | 0.924 | 0.865 | 0.796 | |
LSHA | 0.937 | 0.912 | 0.893 | 0.989 | 0.968 | 0.906 | 0.938 | 0.922 | 0.911 | 0.956 | 0.914 | 0.891 | |
Terrorists | ACG | 0.927 | 0.902 | 0.871 | 0.859 | 0.784 | 0.697 | 0.936 | 0.911 | 0.892 | 0.890 | 0.853 | 0.842 |
DIFFUSER | 0.963 | 0.924 | 0.880 | 0.965 | 0.932 | 0.862 | 0.958 | 0.926 | 0.870 | 0.952 | 0.879 | 0.821 | |
ATTSAFDEC | 0.961 | 0.927 | 0.884 | 0.952 | 0.918 | 0.879 | 0.960 | 0.922 | 0.875 | 0.924 | 0.874 | 0.816 | |
HC-SBM | 0.942 | 0.915 | 0.866 | 0.878 | 0.801 | 0.715 | 0.930 | 0.914 | 0.841 | 0.903 | 0.857 | 0.825 | |
LSHA | 0.947 | 0.878 | 0.835 | 0.963 | 0.905 | 0.854 | 0.889 | 0.841 | 0.802 | 0.945 | 0.814 | 0.761 | |
TerrAtt | ACG | 0.976 | 0.932 | 0.917 | 0.843 | 0.794 | 0.643 | 0.903 | 0.849 | 0.826 | 0.930 | 0.867 | 0.842 |
DIFFUSER | 0.898 | 0.830 | 0.799 | 0.921 | 0.881 | 0.826 | 0.925 | 0.876 | 0.841 | 0.918 | 0.879 | 0.855 | |
ATTSAFDEC | 0.904 | 0.864 | 0.813 | 0.952 | 0.890 | 0.819 | 0.943 | 0.887 | 0.850 | 0.950 | 0.891 | 0.827 | |
HC-SBM | 0.928 | 0.845 | 0.804 | 0.865 | 0.812 | 0.760 | 0.915 | 0.868 | 0.840 | 0.928 | 0.882 | 0.856 | |
LSHA | 0.965 | 0.912 | 0.863 | 0.966 | 0.913 | 0.893 | 0.963 | 0.865 | 0.828 | 0.964 | 0.847 | 0.805 |
Tab. 6 Comparison of NMI results of ACG and different community hiding algorithms
数据集 | 隐藏算法 | Louvain | Walktrap | LPA | Greedy | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β=1% | β=3% | β=5% | β=1% | β=3% | β=5% | β=1% | β=3% | β=5% | β=1% | β=3% | β=5% | ||
WebKB | ACG | 0.892 | 0.800 | 0.726 | 0.821 | 0.805 | 0.754 | 0.831 | 0.753 | 0.715 | 0.907 | 0.825 | 0.739 |
DIFFUSER | 0.914 | 0.889 | 0.853 | 0.905 | 0.851 | 0.817 | 0.937 | 0.893 | 0.853 | 0.934 | 0.901 | 0.857 | |
ATTSAFDEC | 0.942 | 0.906 | 0.826 | 0.897 | 0.860 | 0.791 | 0.919 | 0.873 | 0.834 | 0.918 | 0.879 | 0.855 | |
HC-SBM | 0.868 | 0.854 | 0.789 | 0.876 | 0.832 | 0.770 | 0.893 | 0.801 | 0.728 | 0.909 | 0.807 | 0.725 | |
LSHA | 0.894 | 0.819 | 0.759 | 0.963 | 0.893 | 0.796 | 0.835 | 0.779 | 0.749 | 0.972 | 0.847 | 0.817 | |
Cora | ACG | 0.828 | 0.744 | 0.630 | 0.831 | 0.797 | 0.746 | 0.849 | 0.836 | 0.829 | 0.855 | 0.786 | 0.724 |
DIFFUSER | 0.940 | 0.868 | 0.774 | 0.918 | 0.861 | 0.786 | 0.948 | 0.902 | 0.797 | 0.943 | 0.894 | 0.832 | |
ATTSAFDEC | 0.933 | 0.875 | 0.780 | 0.905 | 0.863 | 0.817 | 0.927 | 0.891 | 0.856 | 0.915 | 0.847 | 0.795 | |
HC-SBM | 0.854 | 0.763 | 0.655 | 0.876 | 0.782 | 0.729 | 0.864 | 0.847 | 0.771 | 0.878 | 0.801 | 0.748 | |
LSHA | 0.832 | 0.803 | 0.728 | 0.971 | 0.847 | 0.794 | 0.866 | 0.838 | 0.808 | 0.903 | 0.813 | 0.712 | |
CiteSeer | ACG | 0.908 | 0.851 | 0.784 | 0.915 | 0.859 | 0.811 | 0.923 | 0.884 | 0.852 | 0.908 | 0.849 | 0.784 |
DIFFUSER | 0.920 | 0.836 | 0.765 | 0.931 | 0.874 | 0.823 | 0.944 | 0.869 | 0.824 | 0.921 | 0.838 | 0.776 | |
ATTSAFDEC | 0.934 | 0.853 | 0.770 | 0.957 | 0.916 | 0.884 | 0.951 | 0.902 | 0.850 | 0.926 | 0.877 | 0.803 | |
HC-SBM | 0.921 | 0.876 | 0.802 | 0.928 | 0.894 | 0.837 | 0.946 | 0.901 | 0.869 | 0.924 | 0.865 | 0.796 | |
LSHA | 0.937 | 0.912 | 0.893 | 0.989 | 0.968 | 0.906 | 0.938 | 0.922 | 0.911 | 0.956 | 0.914 | 0.891 | |
Terrorists | ACG | 0.927 | 0.902 | 0.871 | 0.859 | 0.784 | 0.697 | 0.936 | 0.911 | 0.892 | 0.890 | 0.853 | 0.842 |
DIFFUSER | 0.963 | 0.924 | 0.880 | 0.965 | 0.932 | 0.862 | 0.958 | 0.926 | 0.870 | 0.952 | 0.879 | 0.821 | |
ATTSAFDEC | 0.961 | 0.927 | 0.884 | 0.952 | 0.918 | 0.879 | 0.960 | 0.922 | 0.875 | 0.924 | 0.874 | 0.816 | |
HC-SBM | 0.942 | 0.915 | 0.866 | 0.878 | 0.801 | 0.715 | 0.930 | 0.914 | 0.841 | 0.903 | 0.857 | 0.825 | |
LSHA | 0.947 | 0.878 | 0.835 | 0.963 | 0.905 | 0.854 | 0.889 | 0.841 | 0.802 | 0.945 | 0.814 | 0.761 | |
TerrAtt | ACG | 0.976 | 0.932 | 0.917 | 0.843 | 0.794 | 0.643 | 0.903 | 0.849 | 0.826 | 0.930 | 0.867 | 0.842 |
DIFFUSER | 0.898 | 0.830 | 0.799 | 0.921 | 0.881 | 0.826 | 0.925 | 0.876 | 0.841 | 0.918 | 0.879 | 0.855 | |
ATTSAFDEC | 0.904 | 0.864 | 0.813 | 0.952 | 0.890 | 0.819 | 0.943 | 0.887 | 0.850 | 0.950 | 0.891 | 0.827 | |
HC-SBM | 0.928 | 0.845 | 0.804 | 0.865 | 0.812 | 0.760 | 0.915 | 0.868 | 0.840 | 0.928 | 0.882 | 0.856 | |
LSHA | 0.965 | 0.912 | 0.863 | 0.966 | 0.913 | 0.893 | 0.963 | 0.865 | 0.828 | 0.964 | 0.847 | 0.805 |
数据集 | 隐藏算法 | Louvain | Walktrap | LPA | Greedy | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β=1% | β=3% | β=5% | β=1% | β=3% | β=5% | β=1% | β=3% | β=5% | β=1% | β=3% | β=5% | ||
WebKB | ACG | 0.773 | 0.688 | 0.661 | 0.738 | 0.694 | 0.643 | 0.760 | 0.667 | 0.658 | 0.802 | 0.740 | 0.713 |
DIFFUSER | 0.803 | 0.701 | 0.676 | 0.837 | 0.765 | 0.680 | 0.826 | 0.789 | 0.671 | 0.819 | 0.816 | 0.767 | |
ATTSAFDEC | 0.824 | 0.759 | 0.684 | 0.780 | 0.731 | 0.641 | 0.818 | 0.752 | 0.656 | 0.790 | 0.748 | 0.702 | |
HC-SBM | 0.792 | 0.705 | 0.678 | 0.765 | 0.712 | 0.655 | 0.784 | 0.689 | 0.674 | 0.820 | 0.762 | 0.730 | |
LSHA | 0.828 | 0.723 | 0.671 | 0.922 | 0.818 | 0.619 | 0.712 | 0.625 | 0.598 | 0.966 | 0.794 | 0.759 | |
Cora | ACG | 0.760 | 0.714 | 0.678 | 0.748 | 0.702 | 0.696 | 0.766 | 0.734 | 0.680 | 0.765 | 0.733 | 0.674 |
DIFFUSER | 0.832 | 0.775 | 0.714 | 0.808 | 0.766 | 0.694 | 0.837 | 0.788 | 0.727 | 0.813 | 0.779 | 0.742 | |
ATTSAFDEC | 0.821 | 0.754 | 0.685 | 0.804 | 0.741 | 0.710 | 0.801 | 0.784 | 0.720 | 0.799 | 0.727 | 0.684 | |
HC-SBM | 0.766 | 0.721 | 0.654 | 0.864 | 0.748 | 0.651 | 0.783 | 0.721 | 0.652 | 0.810 | 0.762 | 0.598 | |
LSHA | 0.796 | 0.740 | 0.635 | 0.945 | 0.647 | 0.589 | 0.776 | 0.701 | 0.620 | 0.848 | 0.739 | 0.582 | |
CiteSeer | ACG | 0.743 | 0.688 | 0.670 | 0.784 | 0.752 | 0.719 | 0.793 | 0.763 | 0.716 | 0.782 | 0.764 | 0.720 |
DIFFUSER | 0.781 | 0.731 | 0.654 | 0.821 | 0.784 | 0.739 | 0.808 | 0.731 | 0.671 | 0.827 | 0.760 | 0.711 | |
ATTSAFDEC | 0.745 | 0.717 | 0.657 | 0.840 | 0.776 | 0.763 | 0.795 | 0.755 | 0.704 | 0.796 | 0.753 | 0.699 | |
HC-SBM | 0.804 | 0.715 | 0.641 | 0.903 | 0.821 | 0.766 | 0.745 | 0.674 | 0.632 | 0.847 | 0.765 | 0.628 | |
LSHA | 0.762 | 0.695 | 0.623 | 0.946 | 0.851 | 0.758 | 0.714 | 0.658 | 0.586 | 0.792 | 0.683 | 0.564 | |
Terrorists | ACG | 0.816 | 0.764 | 0.741 | 0.793 | 0.721 | 0.697 | 0.831 | 0.791 | 0.732 | 0.788 | 0.737 | 0.728 |
DIFFUSER | 0.833 | 0.782 | 0.735 | 0.814 | 0.809 | 0.758 | 0.861 | 0.806 | 0.730 | 0.801 | 0.730 | 0.659 | |
ATTSAFDEC | 0.813 | 0.775 | 0.724 | 0.846 | 0.795 | 0.789 | 0.874 | 0.754 | 0.710 | 0.794 | 0.722 | 0.674 | |
HC-SBM | 0.845 | 0.788 | 0.715 | 0.847 | 0.794 | 0.727 | 0.784 | 0.725 | 0.683 | 0.847 | 0.762 | 0.619 | |
LSHA | 0.933 | 0.854 | 0.726 | 0.948 | 0.892 | 0.774 | 0.769 | 0.712 | 0.688 | 0.923 | 0.746 | 0.658 | |
TerrAtt | ACG | 0.810 | 0.786 | 0.762 | 0.769 | 0.718 | 0.630 | 0.789 | 0.734 | 0.703 | 0.798 | 0.768 | 0.716 |
DIFFUSER | 0.779 | 0.704 | 0.691 | 0.817 | 0.760 | 0.717 | 0.784 | 0.720 | 0.661 | 0.781 | 0.745 | 0.698 | |
ATTSAFDEC | 0.788 | 0.734 | 0.703 | 0.804 | 0.770 | 0.729 | 0.813 | 0.723 | 0.719 | 0.820 | 0.781 | 0.712 | |
HC-SBM | 0.763 | 0.681 | 0.614 | 0.842 | 0.785 | 0.662 | 0.791 | 0.701 | 0.656 | 0.754 | 0.702 | 0.648 | |
LSHA | 0.766 | 0.653 | 0.582 | 0.778 | 0.722 | 0.649 | 0.806 | 0.693 | 0.613 | 0.762 | 0.729 | 0.645 |
Tab. 7 Comparison of ARI results of ACG and different community hiding algorithms
数据集 | 隐藏算法 | Louvain | Walktrap | LPA | Greedy | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β=1% | β=3% | β=5% | β=1% | β=3% | β=5% | β=1% | β=3% | β=5% | β=1% | β=3% | β=5% | ||
WebKB | ACG | 0.773 | 0.688 | 0.661 | 0.738 | 0.694 | 0.643 | 0.760 | 0.667 | 0.658 | 0.802 | 0.740 | 0.713 |
DIFFUSER | 0.803 | 0.701 | 0.676 | 0.837 | 0.765 | 0.680 | 0.826 | 0.789 | 0.671 | 0.819 | 0.816 | 0.767 | |
ATTSAFDEC | 0.824 | 0.759 | 0.684 | 0.780 | 0.731 | 0.641 | 0.818 | 0.752 | 0.656 | 0.790 | 0.748 | 0.702 | |
HC-SBM | 0.792 | 0.705 | 0.678 | 0.765 | 0.712 | 0.655 | 0.784 | 0.689 | 0.674 | 0.820 | 0.762 | 0.730 | |
LSHA | 0.828 | 0.723 | 0.671 | 0.922 | 0.818 | 0.619 | 0.712 | 0.625 | 0.598 | 0.966 | 0.794 | 0.759 | |
Cora | ACG | 0.760 | 0.714 | 0.678 | 0.748 | 0.702 | 0.696 | 0.766 | 0.734 | 0.680 | 0.765 | 0.733 | 0.674 |
DIFFUSER | 0.832 | 0.775 | 0.714 | 0.808 | 0.766 | 0.694 | 0.837 | 0.788 | 0.727 | 0.813 | 0.779 | 0.742 | |
ATTSAFDEC | 0.821 | 0.754 | 0.685 | 0.804 | 0.741 | 0.710 | 0.801 | 0.784 | 0.720 | 0.799 | 0.727 | 0.684 | |
HC-SBM | 0.766 | 0.721 | 0.654 | 0.864 | 0.748 | 0.651 | 0.783 | 0.721 | 0.652 | 0.810 | 0.762 | 0.598 | |
LSHA | 0.796 | 0.740 | 0.635 | 0.945 | 0.647 | 0.589 | 0.776 | 0.701 | 0.620 | 0.848 | 0.739 | 0.582 | |
CiteSeer | ACG | 0.743 | 0.688 | 0.670 | 0.784 | 0.752 | 0.719 | 0.793 | 0.763 | 0.716 | 0.782 | 0.764 | 0.720 |
DIFFUSER | 0.781 | 0.731 | 0.654 | 0.821 | 0.784 | 0.739 | 0.808 | 0.731 | 0.671 | 0.827 | 0.760 | 0.711 | |
ATTSAFDEC | 0.745 | 0.717 | 0.657 | 0.840 | 0.776 | 0.763 | 0.795 | 0.755 | 0.704 | 0.796 | 0.753 | 0.699 | |
HC-SBM | 0.804 | 0.715 | 0.641 | 0.903 | 0.821 | 0.766 | 0.745 | 0.674 | 0.632 | 0.847 | 0.765 | 0.628 | |
LSHA | 0.762 | 0.695 | 0.623 | 0.946 | 0.851 | 0.758 | 0.714 | 0.658 | 0.586 | 0.792 | 0.683 | 0.564 | |
Terrorists | ACG | 0.816 | 0.764 | 0.741 | 0.793 | 0.721 | 0.697 | 0.831 | 0.791 | 0.732 | 0.788 | 0.737 | 0.728 |
DIFFUSER | 0.833 | 0.782 | 0.735 | 0.814 | 0.809 | 0.758 | 0.861 | 0.806 | 0.730 | 0.801 | 0.730 | 0.659 | |
ATTSAFDEC | 0.813 | 0.775 | 0.724 | 0.846 | 0.795 | 0.789 | 0.874 | 0.754 | 0.710 | 0.794 | 0.722 | 0.674 | |
HC-SBM | 0.845 | 0.788 | 0.715 | 0.847 | 0.794 | 0.727 | 0.784 | 0.725 | 0.683 | 0.847 | 0.762 | 0.619 | |
LSHA | 0.933 | 0.854 | 0.726 | 0.948 | 0.892 | 0.774 | 0.769 | 0.712 | 0.688 | 0.923 | 0.746 | 0.658 | |
TerrAtt | ACG | 0.810 | 0.786 | 0.762 | 0.769 | 0.718 | 0.630 | 0.789 | 0.734 | 0.703 | 0.798 | 0.768 | 0.716 |
DIFFUSER | 0.779 | 0.704 | 0.691 | 0.817 | 0.760 | 0.717 | 0.784 | 0.720 | 0.661 | 0.781 | 0.745 | 0.698 | |
ATTSAFDEC | 0.788 | 0.734 | 0.703 | 0.804 | 0.770 | 0.729 | 0.813 | 0.723 | 0.719 | 0.820 | 0.781 | 0.712 | |
HC-SBM | 0.763 | 0.681 | 0.614 | 0.842 | 0.785 | 0.662 | 0.791 | 0.701 | 0.656 | 0.754 | 0.702 | 0.648 | |
LSHA | 0.766 | 0.653 | 0.582 | 0.778 | 0.722 | 0.649 | 0.806 | 0.693 | 0.613 | 0.762 | 0.729 | 0.645 |
[1] | TANG L, LIU H. Relational learning via latent social dimensions[C]// Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009: 817-826. |
[2] | YANG J, McAULEY J, LESKOVEC J. Community detection in networks with node attributes [C]// Proceedings of the IEEE 13th International Conference on Data Mining. Piscataway: IEEE, 2013: 1151-1156. |
[3] | PRIYA A, SHARMA S, SINHA K, et al. Community detection in networks: a comparative study [C]// Proceedings of the 2023 International Conference on Device Intelligence, Computing and Communication Technologies. Piscataway: IEEE, 2023: 505-510. |
[4] | NEWMAN M E J. Modularity and community structure in networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(23): 8577-8582. |
[5] | FIONDA V, PIRRÒ G. Community deception in attributed networks[J]. IEEE Transactions on Computational Social Systems, 2024, 11(1): 228-237. |
[6] | 邓琨,张健沛,杨静. 利用改进遗传算法进行复杂网络社团发现[J].哈尔滨工程大学学报, 2013, 34(11): 1438-1444. |
DENG K, ZHANG J P, YANG J. Community detection in complex networks using an improved genetic algorithm [J]. Journal of Harbin Engineering University, 2013, 34(11): 1438-1444. | |
[7] | HOLLAND J H. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence [M]. Cambridge: MIT Press, 1992. |
[8] | BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks [J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008(10): No.P10008. |
[9] | PONS P, LATAPY M. Computing communities in large networks using random walks [C]// Proceedings of the 2005 International Symposium on Computer and Information Sciences, LNCS 3733. Berlin: Springer, 2005: 284-293. |
[10] | CLAUSET A, NEWMAN M E J, MOORE C. Finding community structure in very large networks [J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 70(6): No.066111. |
[11] | RAGHAVAN U N, ALBERT R, KUMARA S. Near linear time algorithm to detect community structures in large-scale networks[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2007, 76(3): No.036106. |
[12] | CHUNAEV P. Community detection in node-attributed social networks: a survey [J]. Computer Science Review, 2020, 37: No.100286. |
[13] | NAWAZ W, KHAN K U, LEE Y K, et al. Intra graph clustering using collaborative similarity measure [J]. Distributed and Parallel Databases, 2015, 33(4): 583-603. |
[14] | FALIH I, GROZAVU N, KANAWATI R, et al. ANCA: attributed network clustering algorithm [C]// Proceedings of the 2017 International Conference on Complex Networks and Their Applications, SCI 689. Cham: Springer, 2018: 241-252. |
[15] | JIN D, YU Z, JIAO P, et al. A survey of community detection approaches: from statistical modeling to deep learning [J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(2): 1149-1170. |
[16] | NAGARAJA S. The impact of unlinkability on adversarial community detection: effects and countermeasures [C]// Proceedings of the 2010 International Symposium on Privacy Enhancing Technologies, LNCS 6205. Berlin: Springer, 2010: 253-272. |
[17] | WANIEK M, MICHALAK T P, WOOLDRIDGE M J, et al. Hiding individuals and communities in a social network [J]. Nature Human Behaviour, 2018, 2(2): 139-147. |
[18] | FIONDA V, PIRRÒ G. Community deception or: how to stop fearing community detection algorithms [J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(4): 660-673. |
[19] | CHEN X, JIANG Z, LI H, et al. Community hiding by link perturbation in social networks [J]. IEEE Transactions on Computational Social Systems, 2021, 8(3): 704-715. |
[20] | LIU Y, LIU J, ZHANG Z, et al. REM: from structural entropy to community structure deception [C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 12938-12948. |
[21] | CHEN J, CHEN L, CHEN Y, et al. GA-based Q-attack on community detection [J]. IEEE Transactions on Computational Social Systems, 2019, 6(3): 491-503. |
[22] | CHEN J, CHEN Y, CHEN L, et al. Multiscale evolutionary perturbation attack on community detection [J]. IEEE Transactions on Computational Social Systems, 2021, 8(1): 62-75. |
[23] | LIU D, CHANG Z, YANG G, et al. Hiding ourselves from community detection through genetic algorithms [J]. Information Sciences, 2022, 614: 123-137. |
[24] | MITTAL S, SENGUPTA D, CHAKRABORTY T. Hide and seek: outwitting community detection algorithms [J]. IEEE Transactions on Computational Social Systems, 2021, 8(4): 799-808. |
[25] | ZHAO J, WANG Z, CAO J, et al. A self-adaptive evolutionary deception framework for community structure [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(8): 4954-4967. |
[26] | PIRRÒ G. Community deception from a node-centric perspective[J]. IEEE Transactions on Network Science and Engineering, 2024, 11(1): 969-981. |
[27] | 刘栋,刘侠,贾若雪,等. 基于随机块模型的社区隐藏统一框架[J]. 计算机研究与发展, 2024, 61(7): 1850-1862. |
LIU D, LIU X, JIA R X, et al. A unified framework for community hiding based on stochastic block model [J]. Journal of Computer Research and Development, 2024, 61(7): 1850-1862. | |
[28] | ZHU Z, YUAN G, ZHOU T, et al. Community detection for heterogeneous multiple social networks [J]. IEEE Transactions on Computational Social Systems, 2024, 11(5): 6966-6981. |
[29] | FIONDA V, PIRRÓ G. Community deception in weighted networks [C]// Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. New York: ACM, 2021: 278-282. |
[30] | NALLUSAMY K, EASWARAKUMAR K S. PERMDEC: community deception in weighted networks using permanence [J]. Computing, 2024, 106(2): 353-370. |
[31] | TASGIN M, BINGOL H. Community detection in complex networks using genetic algorithms [EB/OL]. [2024-05-22].. |
[32] | SHANG R, BAI J, JIAO L, et al. Community detection based on modularity and an improved genetic algorithm [J]. Physica A: Statistical Mechanics and its Applications, 2013, 392(5): 1215-1231. |
[33] | DANG T A, VIENNET E. Community detection based on structural and attribute similarities [C]// Proceedings of the 2012 International Conference on Digital Society. Red Hook: IARIA Press, 2012: 7-12. |
[34] | ZHOU Y, CHENG H, YU J X. Clustering large attributed graphs: an efficient incremental approach [C]// Proceedings of the 2010 IEEE International Conference on Data Mining. Piscataway: IEEE, 2010: 689-698. |
[35] | DANON L, DÍAZ-GUILERA A, DUCH J, et al. Comparing community structure identification [J]. Journal of Statistical Mechanics: Theory and Experiment, 2005, 2005(9): No.P09008. |
[36] | 陶海成,卜湛,曹杰. 基于多目标强化学习的社区隐藏框架[J]. 中国科学:信息科学, 2021, 51(7):1131-1145. |
TAO H C, BU Z, CAO J. A multi-objective reinforcement learning framework for community deception [J]. SCIENTIA SINICA Informationis, 2021, 51(7): 1131-1145. |
[1] | Jintao SU, Lina GE, Liguang XIAO, Jing ZOU, Zhe WANG. Detection and defense scheme for backdoor attacks in federated learning [J]. Journal of Computer Applications, 2025, 45(8): 2399-2408. |
[2] | Lina GE, Mingyu WANG, Lei TIAN. Review of research on efficiency of federated learning [J]. Journal of Computer Applications, 2025, 45(8): 2387-2398. |
[3] | Yan YAN, Feifei LI, Yaqin LYU, Tao FENG. Secure and efficient frequency estimation method based on shuffled differential privacy [J]. Journal of Computer Applications, 2025, 45(8): 2600-2611. |
[4] | Shudong LIU, Hao WU, Jia CONG, Boyu GU. Port operation scheduling algorithm based on enhanced NSGA-Ⅱ under goals of carbon peaking and carbon neutrality [J]. Journal of Computer Applications, 2025, 45(6): 1945-1953. |
[5] | Gaimei GAO, Miaolian DU, Chunxia LIU, Yuli YANG, Weichao DANG, Guoxia DI. Privacy protection method for consortium blockchain based on SM2 linkable ring signature [J]. Journal of Computer Applications, 2025, 45(5): 1564-1572. |
[6] | Linbo HU, Zhiwei NI, Jiale CHENG, Wentao LIU, Xuhui ZHU. Collaborative crowdsourcing task allocation method fusing community detection [J]. Journal of Computer Applications, 2025, 45(2): 534-545. |
[7] | Baoyin WANG, Hongmei XUE, Qilie LIU, Tao GUO. Privacy-preserving random consensus asset cross-chain scheme [J]. Journal of Computer Applications, 2025, 45(2): 497-505. |
[8] | Dong LIU, Chenhang LI, Changmao WU, Faxin RU, Yuanyuan XIA. Automatic design of optical systems based on correctable reinforced search genetic algorithm [J]. Journal of Computer Applications, 2024, 44(9): 2838-2847. |
[9] | Xinrui LIN, Xiaofei WANG, Yan ZHU. Academic anomaly citation group detection based on local extended community detection [J]. Journal of Computer Applications, 2024, 44(6): 1855-1861. |
[10] | Xuebin CHEN, Zhiqiang REN, Hongyang ZHANG. Review on security threats and defense measures in federated learning [J]. Journal of Computer Applications, 2024, 44(6): 1663-1672. |
[11] | Peiqian LIU, Shuilian WANG, Zihao SHEN, Hui WANG. Location privacy protection algorithm based on trajectory perturbation and road network matching [J]. Journal of Computer Applications, 2024, 44(5): 1546-1554. |
[12] | Xuanfeng LI, Shengcai LIU, Ke TANG. Novel genetic algorithm for solving chance-constrained multiple-choice Knapsack problems [J]. Journal of Computer Applications, 2024, 44(5): 1378-1385. |
[13] | Lin GAO, Yu ZHOU, Tak Wu KWONG. Evolutionary bi-level adaptive local feature selection [J]. Journal of Computer Applications, 2024, 44(5): 1408-1414. |
[14] | Jianqiang LI, Zhou HE. Hybrid NSGA-Ⅱ for vehicle routing problem with multi-trip pickup and delivery [J]. Journal of Computer Applications, 2024, 44(4): 1187-1194. |
[15] | Gaimei GAO, Jin ZHANG, Chunxia LIU, Weichao DANG, Shangwang BAI. Privacy protection scheme for crowdsourced testing tasks based on blockchain and CP-ABE policy hiding [J]. Journal of Computer Applications, 2024, 44(3): 811-818. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||