Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (10): 3336-3341.DOI: 10.11772/j.issn.1001-9081.2024101545
• Frontier and comprehensive applications • Previous Articles
Yali XUE1(), Zhongmin XU1,2, Shihao LIU3
Received:
2024-10-30
Revised:
2024-12-25
Accepted:
2024-12-30
Online:
2025-01-06
Published:
2025-10-10
Contact:
Yali XUE
About author:
XUE Yali, born in 1974, Ph. D., associate professor. Her research interests include target detection and recognition, image countermeasures and defense.Supported by:
通讯作者:
薛雅丽
作者简介:
薛雅丽(1974—),女,黑龙江集贤人,副教授,博士,主要研究方向:目标检测与识别、图像对抗与防御 Email:xueyali@nuaa.edu.cn基金资助:
CLC Number:
Yali XUE, Zhongmin XU, Shihao LIU. Gravity data denoising method based on multilevel wavelet residual network[J]. Journal of Computer Applications, 2025, 45(10): 3336-3341.
薛雅丽, 徐忠敏, 刘世豪. 基于多级小波残差网络的重力数据去噪方法[J]. 《计算机应用》唯一官方网站, 2025, 45(10): 3336-3341.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024101545
项目 | 内容 |
---|---|
优化算法 | Adam |
初始学习率 | 10-3 |
学习率衰减 | CosineAnnealingLR |
训练轮数 | 40 |
批大小 | 60 |
损失函数 | MSE |
Tab. 1 Training parameters of MWRNet
项目 | 内容 |
---|---|
优化算法 | Adam |
初始学习率 | 10-3 |
学习率衰减 | CosineAnnealingLR |
训练轮数 | 40 |
批大小 | 60 |
损失函数 | MSE |
层数 | Haar | Daubechies | Symlet | Coiflet | ||||
---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | |
3 | 35.40 | 0.906 7 | 35.34 | 0.910 7 | 35.01 | 0.901 2 | 35.56 | 0.918 3 |
2 | 35.10 | 0.905 6 | 35.81 | 0.920 9 | 35.45 | 0.912 1 | 35.83 | 0.922 3 |
1 | 35.26 | 0.903 4 | 35.01 | 0.898 0 | 35.66 | 0.917 2 | 34.84 | 0.892 8 |
Tab. 2 Average PSNR and SSIM of different combinations of wavelet functions and decomposition layers at noise level σ=25
层数 | Haar | Daubechies | Symlet | Coiflet | ||||
---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | |
3 | 35.40 | 0.906 7 | 35.34 | 0.910 7 | 35.01 | 0.901 2 | 35.56 | 0.918 3 |
2 | 35.10 | 0.905 6 | 35.81 | 0.920 9 | 35.45 | 0.912 1 | 35.83 | 0.922 3 |
1 | 35.26 | 0.903 4 | 35.01 | 0.898 0 | 35.66 | 0.917 2 | 34.84 | 0.892 8 |
算法 | ||||||||
---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | |
IIR滤波 | 25.36 | 0.825 3 | 24.78 | 0.742 2 | 21.83 | 0.541 4 | 19.35 | 0.404 2 |
FIR滤波 | 34.18 | 0.927 0 | 30.85 | 0.842 1 | 24.91 | 0.636 2 | 21.12 | 0.479 7 |
小波分解 | 35.75 | 0.928 9 | 31.51 | 0.847 6 | 25.11 | 0.652 1 | 21.22 | 0.501 9 |
双边滤波 | 37.18 | 0.951 6 | 32.35 | 0.880 3 | 26.02 | 0.717 5 | 21.74 | 0.507 8 |
BM3D | 37.48 | 0.964 3 | 33.29 | 0.918 9 | 26.61 | 0.794 5 | 22.27 | 0.630 9 |
DnCNN | 41.11 | 0.979 9 | 37.44 | 0.956 4 | 31.97 | 0.859 9 | 23.37 | 0.736 5 |
MWCNN | 41.05 | 0.982 2 | 37.50 | 0.962 0 | 32.28 | 0.858 8 | 23.22 | 0.790 3 |
MWRNet | 41.41 | 0.984 6 | 37.80 | 0.959 2 | 32.42 | 0.868 3 | 24.00 | 0.789 3 |
Tab.3 Average PSNR and SSIM of MWRNet and comparison algorithms at different noise levels σ on test set
算法 | ||||||||
---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | |
IIR滤波 | 25.36 | 0.825 3 | 24.78 | 0.742 2 | 21.83 | 0.541 4 | 19.35 | 0.404 2 |
FIR滤波 | 34.18 | 0.927 0 | 30.85 | 0.842 1 | 24.91 | 0.636 2 | 21.12 | 0.479 7 |
小波分解 | 35.75 | 0.928 9 | 31.51 | 0.847 6 | 25.11 | 0.652 1 | 21.22 | 0.501 9 |
双边滤波 | 37.18 | 0.951 6 | 32.35 | 0.880 3 | 26.02 | 0.717 5 | 21.74 | 0.507 8 |
BM3D | 37.48 | 0.964 3 | 33.29 | 0.918 9 | 26.61 | 0.794 5 | 22.27 | 0.630 9 |
DnCNN | 41.11 | 0.979 9 | 37.44 | 0.956 4 | 31.97 | 0.859 9 | 23.37 | 0.736 5 |
MWCNN | 41.05 | 0.982 2 | 37.50 | 0.962 0 | 32.28 | 0.858 8 | 23.22 | 0.790 3 |
MWRNet | 41.41 | 0.984 6 | 37.80 | 0.959 2 | 32.42 | 0.868 3 | 24.00 | 0.789 3 |
[1] | 曾小牛,李夕海,刘继昊,等. 一种基于改进凸集投影原理的航空重力数据插值与去噪方法[J]. 武汉大学学报(信息科学版), 2020, 45(10): 1555-1562. |
ZENG X N, LI X H, LIU J H, et al. Simultaneous interpolation and denoising method for airborne gravity data based on improved projection onto convex sets theory[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1555-1562. | |
[2] | LEBLANC G E, MORRIS W A. Denoising of aeromagnetic data via the wavelet transform[J]. Geophysics, 2001, 66(6): 1793-1804. |
[3] | DE OLIVEIRA LYRIO J C S, TENORIO L, LI Y. Efficient automatic denoising of gravity gradiometry data[J]. Geophysics, 2004, 69(3): 772-782. |
[4] | ZHANG D, HUANG D, LU J, et al. Gravity gradient data filtering using translation invariant wavelet[J]. ASEG Extended Abstracts, 2016, 2016(1): 1-5. |
[5] | 李宏. 地磁匹配导航航测地磁信号的小波去噪研究[D]. 西安: 长安大学, 2023: 33-51. |
LI H. Research on wavelet denoising of aerial geomagnetism in geomagnetic matching navigation[D]. Xi’an: Chang’an University, 2023: 33-51. | |
[6] | 索奎,吕晓春,张贵宾,等. 基于二维小波能量阈值的重磁数据去噪算法[J]. 中国石油大学学报(自然科学版), 2022, 46(5): 36-45. |
SUO K, LYU X C, ZHANG G B, et al. Denoising algorithm for gravity and magnetic data based on two-dimensional wavelet energy threshold[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(5): 36-45. | |
[7] | 李冬毅,覃方君,黄春福,等. 基于自寻优小波降噪算法的海洋重力数据滤波[J]. 中国惯性技术学报, 2023, 31(9): 883-889. |
LI D Y, QIN F J, HUANG C F, et al. Marine gravity data filtering based on self-optimizing wavelet denoising algorithm[J]. Journal of Chinese Inertial Technology, 2023, 31(9): 883-889. | |
[8] | WANG J, MENG X, GUO L, et al. A correlation-based approach for determining the threshold value of singular value decomposition filtering for potential field data denoising[J]. Journal of Geophysics and Engineering, 2014, 11(5): No.055007. |
[9] | 阳前果. 基于深度学习的重磁数据处理研究[D]. 武汉:中国地质大学, 2021: 30-62. |
YANG Q G. Research on gravity and magnetic data processing based on deep learning[D]. Wuhan: China University of Geosciences, 2021: 30-62. | |
[10] | 黄子炎,王庆宾,赵东明,等. 基于深度残差网络的重力数据去噪重构[J]. 中国惯性技术学报, 2021, 29(4): 443-450. |
HUANG Z Y, WANG Q B, ZHAO D M, et al. Gravity data denoising and reconstruction based on deep residual network[J]. Journal of Chinese Inertial Technology, 2021, 29(4): 443-450. | |
[11] | 刘霞,孙英杰. 基于融合残差注意力机制的卷积神经网络地震信号去噪[J]. 吉林大学学报(地球科学版), 2023, 53(2): 609-621. |
LIU X, SUN Y J. Seismic signal denoising based on convolutional neural network with residual and attention mechanism[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(2): 609-621. | |
[12] | 李从昀,朱亚洲,杨晓,等. 基于Noise-to-Noise自监督学习的地震数据去噪方法[J]. 地球物理学进展, 2023, 38(2): 662-676. |
LI C Y, ZHU Y Z, YANG X, et al. Seismic data denoising method based on Noise-to-Noise self-supervised learning[J]. Progress in Geophysics, 2023, 38(2): 662-676. | |
[13] | 赵振聪,饶莹. 基于结构保护去噪神经网络的地震数据随机噪声压制[J]. 地球物理学报, 2024, 67(10): 3841-3850. |
ZHAO Z C, RAO Y. Seismic random noise suppression based on SP-DnCNN neural network[J]. Chinese Journal of Geophysics, 2024, 67(10): 3841-3850. | |
[14] | 王洪洲. 基于深度学习的地震勘探数据去噪及速度模型反演技术研究[D]. 长春:吉林大学, 2024: 56-80. |
WANG H Z. Research on deep learning-based seismic exploration data denoising and velocity model inversion[D]. Changchun: Jilin University, 2024: 56-80. | |
[15] | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. |
[16] | 高好天,孙宁娜,孙可奕,等. DnCNN和U-Net对地震随机噪声压制的对比分析[J]. 地球物理学进展, 2021, 36(6): 2441-2453. |
GAO H T, SUN N N, SUN K Y, et al. Comparative analysis of DnCNN and U-Net on suppression of seismic random noise[J]. Progress in Geophysics, 2021, 36(6): 2441-2453. | |
[17] | DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095. |
[18] | ZHANG K, ZUO W, CHEN Y, et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155. |
[19] | LIU P, ZHANG H, LIAN W, et al. Multi-level wavelet convolutional neural networks[J]. IEEE Access, 2019, 7: 74973-74985. |
[1] | Weigang LI, Jiale SHAO, Zhiqiang TIAN. Point cloud classification and segmentation network based on dual attention mechanism and multi-scale fusion [J]. Journal of Computer Applications, 2025, 45(9): 3003-3010. |
[2] | Zhixiong XU, Bo LI, Xiaoyong BIAN, Qiren HU. Adversarial sample embedded attention U-Net for 3D medical image segmentation [J]. Journal of Computer Applications, 2025, 45(9): 3011-3016. |
[3] | Panfeng JING, Yudong LIANG, Chaowei LI, Junru GUO, Jinyu GUO. Semi-supervised image dehazing algorithm based on teacher-student learning [J]. Journal of Computer Applications, 2025, 45(9): 2975-2983. |
[4] | Hongjun ZHANG, Gaojun PAN, Hao YE, Yubin LU, Yiheng MIAO. Multi-source heterogeneous data analysis method combining deep learning and tensor decomposition [J]. Journal of Computer Applications, 2025, 45(9): 2838-2847. |
[5] | Jin LI, Liqun LIU. SAR and visible image fusion based on residual Swin Transformer [J]. Journal of Computer Applications, 2025, 45(9): 2949-2956. |
[6] | Bing YIN, Zhenhua LING, Yin LIN, Changfeng XI, Ying LIU. Emotion recognition method compatible with missing modal reasoning [J]. Journal of Computer Applications, 2025, 45(9): 2764-2772. |
[7] | Lina GE, Mingyu WANG, Lei TIAN. Review of research on efficiency of federated learning [J]. Journal of Computer Applications, 2025, 45(8): 2387-2398. |
[8] | Yanhua LIAO, Yuanxia YAN, Wenlin PAN. Multi-target detection algorithm for traffic intersection images based on YOLOv9 [J]. Journal of Computer Applications, 2025, 45(8): 2555-2565. |
[9] | Peng PENG, Ziting CAI, Wenling LIU, Caihua CHEN, Wei ZENG, Baolai HUANG. Speech emotion recognition method based on hybrid Siamese network with CNN and bidirectional GRU [J]. Journal of Computer Applications, 2025, 45(8): 2515-2521. |
[10] | Shuo ZHANG, Guokai SUN, Yuan ZHUANG, Xiaoyu FENG, Jingzhi WANG. Dynamic detection method of eclipse attacks for blockchain node analysis [J]. Journal of Computer Applications, 2025, 45(8): 2428-2436. |
[11] | Jinxian SUO, Liping ZHANG, Sheng YAN, Dongqi WANG, Yawen ZHANG. Review of interpretable deep knowledge tracing methods [J]. Journal of Computer Applications, 2025, 45(7): 2043-2055. |
[12] | Zhenzhou WANG, Fangfang GUO, Jingfang SU, He SU, Jianchao WANG. Robustness optimization method of visual model for intelligent inspection [J]. Journal of Computer Applications, 2025, 45(7): 2361-2368. |
[13] | Qiaoling QI, Xiaoxiao WANG, Qianqian ZHANG, Peng WANG, Yongfeng DONG. Label noise adaptive learning algorithm based on meta-learning [J]. Journal of Computer Applications, 2025, 45(7): 2113-2122. |
[14] | Xiaoyang ZHAO, Xinzheng XU, Zhongnian LI. Research review on explainable artificial intelligence in internet of things applications [J]. Journal of Computer Applications, 2025, 45(7): 2169-2179. |
[15] | Lanhao LI, Haojun YAN, Haoyi ZHOU, Qingyun SUN, Jianxin LI. Multi-scale information fusion time series long-term forecasting model based on neural network [J]. Journal of Computer Applications, 2025, 45(6): 1776-1783. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||