Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (10): 3203-3213.DOI: 10.11772/j.issn.1001-9081.2024091314
• Data science and technology • Previous Articles
Le LYU1, Bohan ZHANG2, Junchang JING3, Dong LIU1,2,3()
Received:
2024-09-14
Revised:
2024-12-03
Accepted:
2024-12-09
Online:
2025-01-14
Published:
2025-10-10
Contact:
Dong LIU
About author:
LYU Le, born in 2000, M. S. candidate. His research interests include social network analysis.Supported by:
通讯作者:
刘栋
作者简介:
吕乐(2000—),男,河南驻马店人,硕士研究生,主要研究方向:社会网络分析基金资助:
CLC Number:
Le LYU, Bohan ZHANG, Junchang JING, Dong LIU. Multi-target node hiding method based on permanence[J]. Journal of Computer Applications, 2025, 45(10): 3203-3213.
吕乐, 张博瀚, 荆军昌, 刘栋. 基于持久性的多目标节点隐藏方法[J]. 《计算机应用》唯一官方网站, 2025, 45(10): 3203-3213.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024091314
数据集 | 节点数 | 边数 | 数据集描述 |
---|---|---|---|
Karate | 34 | 78 | 空手道网络 |
Dolphins | 62 | 159 | 海豚社交网络 |
Polbooks | 105 | 441 | 美国政治书籍网络 |
Football | 115 | 616 | 足球网络 |
Email-univ | 1 133 | 5 451 | 大学邮件网络 |
Power | 4 941 | 6 594 | 美国电网 |
Oregon-1 | 10 670 | 22 002 | 自治系统对等信息网络 |
Tech-pgp | 10 680 | 24 316 | 安全信息交换网络 |
Tab. 1 Details of experimental datasets
数据集 | 节点数 | 边数 | 数据集描述 |
---|---|---|---|
Karate | 34 | 78 | 空手道网络 |
Dolphins | 62 | 159 | 海豚社交网络 |
Polbooks | 105 | 441 | 美国政治书籍网络 |
Football | 115 | 616 | 足球网络 |
Email-univ | 1 133 | 5 451 | 大学邮件网络 |
Power | 4 941 | 6 594 | 美国电网 |
Oregon-1 | 10 670 | 22 002 | 自治系统对等信息网络 |
Tech-pgp | 10 680 | 24 316 | 安全信息交换网络 |
检测方法 | Karate数据集上的异化率 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5%预算 | 10%预算 | 15%预算 | 20%预算 | |||||||||||||
MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | |
Lou | 5.0 | 11.1 | 11.1 | 3.3 | 6.7 | 22.2 | 11.1 | 26.7 | 13.3 | 11.1 | 33.3 | 33.3 | 33.3 | 11.1 | 33.3 | 33.3 |
Lei | 0.0 | 66.7 | 0.0 | 0.0 | 6.7 | 33.3 | 66.7 | 33.3 | 25.0 | 66.7 | 66.6 | 33.3 | 43.3 | 66.7 | 66.7 | 33.3 |
Inf | 0.0 | 0.0 | 0.0 | 0.0 | 1.7 | 0.0 | 0.0 | 0.0 | 11.7 | 0.0 | 0.0 | 33.3 | 20.0 | 33.3 | 66.7 | 100.0 |
Lab | 13.3 | 0.0 | 0.0 | 33.3 | 16.7 | 0.0 | 33.3 | 33.3 | 31.7 | 0.0 | 33.3 | 33.3 | 30.0 | 0.0 | 33.3 | 33.3 |
Walk | 3.3 | 0.0 | 0.0 | 0.0 | 3.3 | 0.0 | 0.0 | 66.7 | 11.7 | 0.0 | 66.7 | 66.7 | 41.7 | 100.0 | 66.7 | 66.7 |
Fast | 3.3 | 0.0 | 0.0 | 0.0 | 20.0 | 33.3 | 0.0 | 33.3 | 25.0 | 33.3 | 33.3 | 66.7 | 40.0 | 66.7 | 0.0 | 33.3 |
平均值 | 4.2 | 13.0 | 1.9 | 6.1 | 9.2 | 14.8 | 18.5 | 32.2 | 19.7 | 18.5 | 38.9 | 44.4 | 34.7 | 46.3 | 44.4 | 50.0 |
检测方法 | Polbooks数据集上的异化率 | |||||||||||||||
5%预算 | 10%预算 | 15%预算 | 20%预算 | |||||||||||||
MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | |
Lou | 1.0 | 0.0 | 6.7 | 15.0 | 13.5 | 33.3 | 33.3 | 15.0 | 16.5 | 20.0 | 26.7 | 34.0 | 36.5 | 36.7 | 56.7 | 57.0 |
Lei | 3.5 | 0.0 | 0.0 | 0.0 | 7.0 | 0.0 | 0.0 | 20.0 | 34.5 | 20.0 | 0.0 | 50.0 | 40.5 | 20.0 | 70.0 | 80.0 |
Inf | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 10.0 | 0.0 | 4.0 | 0.0 | 0.0 | 10.0 | 5.5 | 0.0 | 40.0 | 30.0 |
Lab | 8.0 | 0.0 | 0.0 | 0.0 | 9.0 | 0.0 | 0.0 | 50.0 | 10.5 | 0.0 | 0.0 | 0.0 | 25.0 | 0.0 | 20.0 | 50.0 |
Walk | 0.5 | 10.0 | 0.0 | 0.0 | 2.0 | 10.0 | 0.0 | 10.0 | 2.0 | 0.0 | 0.0 | 10.0 | 9.0 | 10.0 | 0.0 | 30.0 |
Fast | 1.0 | 0.0 | 20.0 | 20.0 | 1.0 | 0.0 | 0.0 | 10.0 | 8.5 | 0.0 | 0.0 | 40.0 | 12.5 | 0.0 | 0.0 | 40.0 |
平均值 | 2.3 | 1.7 | 4.4 | 5.8 | 5.6 | 7.2 | 7.2 | 17.5 | 12.7 | 6.7 | 4.4 | 24.0 | 21.5 | 11.1 | 31.1 | 47.8 |
检测方法 | Football数据集上的异化率 | |||||||||||||||
5%预算 | 10%预算 | 15%预算 | 20%预算 | |||||||||||||
MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | |
Lou | 3.6 | 18.2 | 16.7 | 16.4 | 7.7 | 39.4 | 16.7 | 63.6 | 32.7 | 100.0 | 33.3 | 90.9 | 74.1 | 100.0 | 61.1 | 100.0 |
Lei | 6.4 | 9.1 | 0.0 | 0.0 | 11.4 | 45.5 | 16.7 | 54.5 | 36.8 | 81.8 | 33.3 | 90.9 | 68.2 | 100.0 | 33.3 | 100.0 |
Inf | 27.3 | 27.3 | 33.3 | 27.3 | 35.5 | 54.5 | 50.0 | 72.7 | 48.2 | 100.0 | 33.3 | 72.7 | 76.4 | 100.0 | 50.0 | 81.8 |
Lab | 23.2 | 9.1 | 33.3 | 27.3 | 47.3 | 54.5 | 33.3 | 81.8 | 64.1 | 90.9 | 33.3 | 72.7 | 86.8 | 100.0 | 50.0 | 81.8 |
Walk | 5.5 | 9.1 | 0.0 | 0.0 | 25.0 | 63.6 | 50.0 | 45.5 | 66.4 | 100.0 | 50.0 | 81.8 | 80.5 | 100.0 | 66.7 | 90.9 |
Fast | 41.8 | 45.5 | 33.3 | 54.5 | 48.6 | 63.6 | 33.3 | 63.6 | 56.8 | 90.9 | 66.7 | 100.0 | 72.7 | 90.9 | 66.7 | 72.7 |
平均值 | 18.0 | 19.7 | 19.4 | 20.9 | 29.2 | 53.5 | 33.3 | 63.6 | 50.8 | 93.9 | 41.7 | 84.8 | 76.4 | 98.5 | 54.6 | 87.9 |
检测方法 | Dolphins数据集上的异化率 | |||||||||||||||
5%预算 | 10%预算 | 15%预算 | 20%预算 | |||||||||||||
MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | |
Lou | 3.3 | 0.0 | 16.7 | 3.3 | 8.3 | 0.0 | 16.7 | 33.3 | 15.8 | 5.6 | 38.9 | 35.0 | 34.2 | 5.6 | 61.1 | 61.7 |
Lei | 0.8 | 0.0 | 0.0 | 0.0 | 14.2 | 0.0 | 16.7 | 33.3 | 23.3 | 0.0 | 33.3 | 28.3 | 45.8 | 33.3 | 33.3 | 66.7 |
Inf | 5.8 | 0.0 | 0.0 | 50.0 | 15.8 | 50.0 | 50.0 | 16.7 | 37.5 | 66.7 | 33.3 | 50.0 | 46.7 | 16.7 | 50.0 | 66.7 |
Lab | 20.8 | 16.7 | 33.3 | 16.7 | 27.5 | 50.0 | 33.3 | 33.3 | 34.2 | 50.0 | 33.3 | 33.3 | 40.0 | 50.0 | 50.0 | 66.7 |
Walk | 8.3 | 16.7 | 0.0 | 0.0 | 8.3 | 0.0 | 50.0 | 50.0 | 43.3 | 16.7 | 50.0 | 50.0 | 39.2 | 16.7 | 66.7 | 16.6 |
Fast | 13.3 | 16.7 | 33.3 | 16.7 | 20.8 | 16.7 | 33.3 | 33.3 | 35.0 | 0.0 | 66.7 | 50.0 | 46.7 | 50.0 | 66.7 | 50.0 |
平均值 | 8.7 | 8.3 | 13.9 | 14.4 | 15.8 | 19.4 | 33.3 | 33.3 | 31.5 | 23.1 | 42.6 | 41.1 | 42.1 | 28.7 | 54.6 | 54.7 |
检测方法 | Email-univ数据集上的异化率 | |||||||||||||||
5%预算 | 10%预算 | 15%预算 | 20%预算 | |||||||||||||
MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | |
Lou | 30.3 | 20.9 | 17.7 | 25.0 | 25.3 | 38.9 | 28.3 | 39.0 | 27.6 | 46.9 | 34.5 | 47.0 | 41.8 | 51.6 | 36.6 | 58.7 |
Lei | 14.9 | 28.3 | 18.6 | 22.6 | 18.9 | 41.6 | 22.1 | 32.7 | 25.7 | 38.9 | 29.2 | 38.9 | 29.4 | 42.5 | 29.2 | 42.9 |
Inf | 27.1 | 31.9 | 24.8 | 34.5 | 31.7 | 53.1 | 29.2 | 40.7 | 38.2 | 58.4 | 38.1 | 72.6 | 49.7 | 76.1 | 43.4 | 61.1 |
Lab | 37.3 | 23.9 | 19.5 | 48.7 | 44.8 | 46.9 | 48.7 | 48.7 | 49.7 | 46.9 | 48.7 | 48.7 | 48.7 | 46.0 | 47.8 | 48.7 |
Walk | 9.7 | 15.0 | 7.1 | 10.6 | 21.8 | 23.0 | 10.6 | 17.7 | 21.1 | 35.4 | 21.2 | 30.1 | 39.1 | 49.6 | 21.2 | 29.2 |
Fast | 42.1 | 44.2 | 46.0 | 42.5 | 41.4 | 46.0 | 23.9 | 44.2 | 43.5 | 39.8 | 30.1 | 45.1 | 44.2 | 44.2 | 35.4 | 48.7 |
平均值 | 26.9 | 27.4 | 22.3 | 30.6 | 30.6 | 41.6 | 27.1 | 37.2 | 34.3 | 44.4 | 33.6 | 47.1 | 42.1 | 51.7 | 35.6 | 48.2 |
检测方法 | Tech-pgp数据集上的异化率 | |||||||||||||||
5%预算 | 10%预算 | 15%预算 | 20%预算 | |||||||||||||
MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | |
Lou | 16.5 | 15.7 | 21.4 | 22.8 | 20.7 | 17.5 | 26.6 | 29.7 | 23.4 | 18.4 | 31.5 | 33.9 | 26.0 | 24.8 | 37.3 | 39.0 |
Lei | 14.0 | 10.3 | 17.4 | 17.4 | 16.3 | 13.1 | 23.1 | 29.5 | 17.7 | 19.6 | 29.7 | 29.5 | 18.0 | 24.3 | 32.6 | 33.9 |
Inf | 23.9 | 78.6 | 78.6 | 78.3 | 23.9 | 78.5 | 28.4 | 78.6 | 37.4 | 78.3 | 58.9 | 56.3 | 78.7 | 28.5 | 69.5 | 61.0 |
Lab | 16.6 | 25.4 | 14.1 | 21.2 | 14.3 | 27.6 | 25.6 | 24.6 | 14.7 | 38.3 | 19.0 | 26.5 | 15.4 | 36.5 | 25.7 | 42.3 |
Walk | 18.7 | 23.2 | 17.9 | 16.4 | 20.3 | 17.8 | 24.9 | 23.8 | 25.1 | 23.5 | 29.2 | 29.5 | 23.2 | 29.6 | 32.5 | 33.5 |
Fast | 8.6 | 18.9 | 23.9 | 31.1 | 25.0 | 26.3 | 44.2 | 36.7 | 27.7 | 24.5 | 39.7 | 43.5 | 27.2 | 33.1 | 46.1 | 45.1 |
平均值 | 16.4 | 28.7 | 28.9 | 31.2 | 20.1 | 30.1 | 28.8 | 37.1 | 24.3 | 33.8 | 34.7 | 36.5 | 31.4 | 29.4 | 40.6 | 42.5 |
Tab. 2 Alienation rates of 10% nodes (large-scale multi-target node hiding)
检测方法 | Karate数据集上的异化率 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5%预算 | 10%预算 | 15%预算 | 20%预算 | |||||||||||||
MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | |
Lou | 5.0 | 11.1 | 11.1 | 3.3 | 6.7 | 22.2 | 11.1 | 26.7 | 13.3 | 11.1 | 33.3 | 33.3 | 33.3 | 11.1 | 33.3 | 33.3 |
Lei | 0.0 | 66.7 | 0.0 | 0.0 | 6.7 | 33.3 | 66.7 | 33.3 | 25.0 | 66.7 | 66.6 | 33.3 | 43.3 | 66.7 | 66.7 | 33.3 |
Inf | 0.0 | 0.0 | 0.0 | 0.0 | 1.7 | 0.0 | 0.0 | 0.0 | 11.7 | 0.0 | 0.0 | 33.3 | 20.0 | 33.3 | 66.7 | 100.0 |
Lab | 13.3 | 0.0 | 0.0 | 33.3 | 16.7 | 0.0 | 33.3 | 33.3 | 31.7 | 0.0 | 33.3 | 33.3 | 30.0 | 0.0 | 33.3 | 33.3 |
Walk | 3.3 | 0.0 | 0.0 | 0.0 | 3.3 | 0.0 | 0.0 | 66.7 | 11.7 | 0.0 | 66.7 | 66.7 | 41.7 | 100.0 | 66.7 | 66.7 |
Fast | 3.3 | 0.0 | 0.0 | 0.0 | 20.0 | 33.3 | 0.0 | 33.3 | 25.0 | 33.3 | 33.3 | 66.7 | 40.0 | 66.7 | 0.0 | 33.3 |
平均值 | 4.2 | 13.0 | 1.9 | 6.1 | 9.2 | 14.8 | 18.5 | 32.2 | 19.7 | 18.5 | 38.9 | 44.4 | 34.7 | 46.3 | 44.4 | 50.0 |
检测方法 | Polbooks数据集上的异化率 | |||||||||||||||
5%预算 | 10%预算 | 15%预算 | 20%预算 | |||||||||||||
MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | |
Lou | 1.0 | 0.0 | 6.7 | 15.0 | 13.5 | 33.3 | 33.3 | 15.0 | 16.5 | 20.0 | 26.7 | 34.0 | 36.5 | 36.7 | 56.7 | 57.0 |
Lei | 3.5 | 0.0 | 0.0 | 0.0 | 7.0 | 0.0 | 0.0 | 20.0 | 34.5 | 20.0 | 0.0 | 50.0 | 40.5 | 20.0 | 70.0 | 80.0 |
Inf | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 10.0 | 0.0 | 4.0 | 0.0 | 0.0 | 10.0 | 5.5 | 0.0 | 40.0 | 30.0 |
Lab | 8.0 | 0.0 | 0.0 | 0.0 | 9.0 | 0.0 | 0.0 | 50.0 | 10.5 | 0.0 | 0.0 | 0.0 | 25.0 | 0.0 | 20.0 | 50.0 |
Walk | 0.5 | 10.0 | 0.0 | 0.0 | 2.0 | 10.0 | 0.0 | 10.0 | 2.0 | 0.0 | 0.0 | 10.0 | 9.0 | 10.0 | 0.0 | 30.0 |
Fast | 1.0 | 0.0 | 20.0 | 20.0 | 1.0 | 0.0 | 0.0 | 10.0 | 8.5 | 0.0 | 0.0 | 40.0 | 12.5 | 0.0 | 0.0 | 40.0 |
平均值 | 2.3 | 1.7 | 4.4 | 5.8 | 5.6 | 7.2 | 7.2 | 17.5 | 12.7 | 6.7 | 4.4 | 24.0 | 21.5 | 11.1 | 31.1 | 47.8 |
检测方法 | Football数据集上的异化率 | |||||||||||||||
5%预算 | 10%预算 | 15%预算 | 20%预算 | |||||||||||||
MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | |
Lou | 3.6 | 18.2 | 16.7 | 16.4 | 7.7 | 39.4 | 16.7 | 63.6 | 32.7 | 100.0 | 33.3 | 90.9 | 74.1 | 100.0 | 61.1 | 100.0 |
Lei | 6.4 | 9.1 | 0.0 | 0.0 | 11.4 | 45.5 | 16.7 | 54.5 | 36.8 | 81.8 | 33.3 | 90.9 | 68.2 | 100.0 | 33.3 | 100.0 |
Inf | 27.3 | 27.3 | 33.3 | 27.3 | 35.5 | 54.5 | 50.0 | 72.7 | 48.2 | 100.0 | 33.3 | 72.7 | 76.4 | 100.0 | 50.0 | 81.8 |
Lab | 23.2 | 9.1 | 33.3 | 27.3 | 47.3 | 54.5 | 33.3 | 81.8 | 64.1 | 90.9 | 33.3 | 72.7 | 86.8 | 100.0 | 50.0 | 81.8 |
Walk | 5.5 | 9.1 | 0.0 | 0.0 | 25.0 | 63.6 | 50.0 | 45.5 | 66.4 | 100.0 | 50.0 | 81.8 | 80.5 | 100.0 | 66.7 | 90.9 |
Fast | 41.8 | 45.5 | 33.3 | 54.5 | 48.6 | 63.6 | 33.3 | 63.6 | 56.8 | 90.9 | 66.7 | 100.0 | 72.7 | 90.9 | 66.7 | 72.7 |
平均值 | 18.0 | 19.7 | 19.4 | 20.9 | 29.2 | 53.5 | 33.3 | 63.6 | 50.8 | 93.9 | 41.7 | 84.8 | 76.4 | 98.5 | 54.6 | 87.9 |
检测方法 | Dolphins数据集上的异化率 | |||||||||||||||
5%预算 | 10%预算 | 15%预算 | 20%预算 | |||||||||||||
MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | |
Lou | 3.3 | 0.0 | 16.7 | 3.3 | 8.3 | 0.0 | 16.7 | 33.3 | 15.8 | 5.6 | 38.9 | 35.0 | 34.2 | 5.6 | 61.1 | 61.7 |
Lei | 0.8 | 0.0 | 0.0 | 0.0 | 14.2 | 0.0 | 16.7 | 33.3 | 23.3 | 0.0 | 33.3 | 28.3 | 45.8 | 33.3 | 33.3 | 66.7 |
Inf | 5.8 | 0.0 | 0.0 | 50.0 | 15.8 | 50.0 | 50.0 | 16.7 | 37.5 | 66.7 | 33.3 | 50.0 | 46.7 | 16.7 | 50.0 | 66.7 |
Lab | 20.8 | 16.7 | 33.3 | 16.7 | 27.5 | 50.0 | 33.3 | 33.3 | 34.2 | 50.0 | 33.3 | 33.3 | 40.0 | 50.0 | 50.0 | 66.7 |
Walk | 8.3 | 16.7 | 0.0 | 0.0 | 8.3 | 0.0 | 50.0 | 50.0 | 43.3 | 16.7 | 50.0 | 50.0 | 39.2 | 16.7 | 66.7 | 16.6 |
Fast | 13.3 | 16.7 | 33.3 | 16.7 | 20.8 | 16.7 | 33.3 | 33.3 | 35.0 | 0.0 | 66.7 | 50.0 | 46.7 | 50.0 | 66.7 | 50.0 |
平均值 | 8.7 | 8.3 | 13.9 | 14.4 | 15.8 | 19.4 | 33.3 | 33.3 | 31.5 | 23.1 | 42.6 | 41.1 | 42.1 | 28.7 | 54.6 | 54.7 |
检测方法 | Email-univ数据集上的异化率 | |||||||||||||||
5%预算 | 10%预算 | 15%预算 | 20%预算 | |||||||||||||
MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | |
Lou | 30.3 | 20.9 | 17.7 | 25.0 | 25.3 | 38.9 | 28.3 | 39.0 | 27.6 | 46.9 | 34.5 | 47.0 | 41.8 | 51.6 | 36.6 | 58.7 |
Lei | 14.9 | 28.3 | 18.6 | 22.6 | 18.9 | 41.6 | 22.1 | 32.7 | 25.7 | 38.9 | 29.2 | 38.9 | 29.4 | 42.5 | 29.2 | 42.9 |
Inf | 27.1 | 31.9 | 24.8 | 34.5 | 31.7 | 53.1 | 29.2 | 40.7 | 38.2 | 58.4 | 38.1 | 72.6 | 49.7 | 76.1 | 43.4 | 61.1 |
Lab | 37.3 | 23.9 | 19.5 | 48.7 | 44.8 | 46.9 | 48.7 | 48.7 | 49.7 | 46.9 | 48.7 | 48.7 | 48.7 | 46.0 | 47.8 | 48.7 |
Walk | 9.7 | 15.0 | 7.1 | 10.6 | 21.8 | 23.0 | 10.6 | 17.7 | 21.1 | 35.4 | 21.2 | 30.1 | 39.1 | 49.6 | 21.2 | 29.2 |
Fast | 42.1 | 44.2 | 46.0 | 42.5 | 41.4 | 46.0 | 23.9 | 44.2 | 43.5 | 39.8 | 30.1 | 45.1 | 44.2 | 44.2 | 35.4 | 48.7 |
平均值 | 26.9 | 27.4 | 22.3 | 30.6 | 30.6 | 41.6 | 27.1 | 37.2 | 34.3 | 44.4 | 33.6 | 47.1 | 42.1 | 51.7 | 35.6 | 48.2 |
检测方法 | Tech-pgp数据集上的异化率 | |||||||||||||||
5%预算 | 10%预算 | 15%预算 | 20%预算 | |||||||||||||
MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | |
Lou | 16.5 | 15.7 | 21.4 | 22.8 | 20.7 | 17.5 | 26.6 | 29.7 | 23.4 | 18.4 | 31.5 | 33.9 | 26.0 | 24.8 | 37.3 | 39.0 |
Lei | 14.0 | 10.3 | 17.4 | 17.4 | 16.3 | 13.1 | 23.1 | 29.5 | 17.7 | 19.6 | 29.7 | 29.5 | 18.0 | 24.3 | 32.6 | 33.9 |
Inf | 23.9 | 78.6 | 78.6 | 78.3 | 23.9 | 78.5 | 28.4 | 78.6 | 37.4 | 78.3 | 58.9 | 56.3 | 78.7 | 28.5 | 69.5 | 61.0 |
Lab | 16.6 | 25.4 | 14.1 | 21.2 | 14.3 | 27.6 | 25.6 | 24.6 | 14.7 | 38.3 | 19.0 | 26.5 | 15.4 | 36.5 | 25.7 | 42.3 |
Walk | 18.7 | 23.2 | 17.9 | 16.4 | 20.3 | 17.8 | 24.9 | 23.8 | 25.1 | 23.5 | 29.2 | 29.5 | 23.2 | 29.6 | 32.5 | 33.5 |
Fast | 8.6 | 18.9 | 23.9 | 31.1 | 25.0 | 26.3 | 44.2 | 36.7 | 27.7 | 24.5 | 39.7 | 43.5 | 27.2 | 33.1 | 46.1 | 45.1 |
平均值 | 16.4 | 28.7 | 28.9 | 31.2 | 20.1 | 30.1 | 28.8 | 37.1 | 24.3 | 33.8 | 34.7 | 36.5 | 31.4 | 29.4 | 40.6 | 42.5 |
检测方法 | Email-univ数据集上的异化率 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5%预算 | 10%预算 | 15%预算 | 20%预算 | |||||||||||||
MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | |
Lou | 33.6 | 84.5 | 38.2 | 84.5 | 42.7 | 94.5 | 53.6 | 100.0 | 46.4 | 98.2 | 74.5 | 99.1 | 61.8 | 99.1 | 93.6 | 100.0 |
Lei | 43.6 | 92.7 | 20.0 | 81.8 | 21.8 | 100.0 | 40.0 | 100.0 | 56.4 | 100.0 | 63.6 | 100.0 | 45.5 | 100.0 | 100.0 | 100.0 |
Inf | 18.2 | 90.9 | 45.5 | 100.0 | 36.4 | 100.0 | 72.7 | 100.0 | 36.4 | 100.0 | 81.8 | 100.0 | 54.5 | 100.0 | 90.9 | 100.0 |
Lab | 36.4 | 27.3 | 36.4 | 36.4 | 36.4 | 100.0 | 36.4 | 36.4 | 36.4 | 100.0 | 36.4 | 54.5 | 36.4 | 36.4 | 36.4 | 36.4 |
Walk | 0.0 | 45.5 | 0.0 | 63.6 | 36.4 | 36.4 | 54.5 | 100.0 | 36.4 | 45.5 | 36.4 | 100.0 | 100.0 | 45.5 | 36.4 | 100.0 |
Fast | 27.3 | 72.7 | 72.7 | 72.7 | 63.6 | 90.9 | 63.6 | 90.9 | 72.7 | 90.9 | 72.7 | 100.0 | 54.5 | 90.9 | 72.7 | 90.9 |
平均值 | 26.5 | 68.9 | 35.5 | 73.2 | 39.5 | 87.0 | 53.5 | 87.9 | 47.4 | 89.1 | 60.9 | 92.3 | 58.8 | 78.6 | 71.7 | 87.9 |
检测方法 | Power数据集上的异化率 | |||||||||||||||
5%预算 | 10%预算 | 15%预算 | 20%预算 | |||||||||||||
MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | |
Lou | 22.9 | 34.7 | 19.4 | 39.0 | 24.7 | 96.3 | 36.3 | 78.4 | 31.0 | 99.2 | 49.0 | 98.4 | 32.0 | 98.4 | 68.6 | 98.4 |
Lei | 21.8 | 34.7 | 19.4 | 37.1 | 28.8 | 94.7 | 25.7 | 82.0 | 34.9 | 97.1 | 50.6 | 96.1 | 33.5 | 100.0 | 64.3 | 98.0 |
Inf | 95.9 | 12.2 | 85.7 | 89.8 | 77.6 | 91.8 | 81.6 | 89.8 | 87.8 | 93.9 | 98.0 | 89.8 | 83.7 | 98.0 | 95.9 | 83.7 |
Lab | 40.8 | 91.8 | 53.1 | 79.6 | 51.0 | 100.0 | 79.6 | 91.8 | 51.0 | 100.0 | 87.8 | 93.9 | 57.1 | 95.9 | 98.0 | 95.9 |
Walk | 55.1 | 73.5 | 63.3 | 71.4 | 67.3 | 77.6 | 63.3 | 77.6 | 65.3 | 69.4 | 65.3 | 67.3 | 67.3 | 67.3 | 65.3 | 73.5 |
Fast | 14.3 | 36.7 | 22.4 | 44.9 | 26.5 | 93.9 | 36.7 | 73.5 | 36.7 | 98.0 | 51.0 | 95.9 | 49.0 | 100.0 | 61.2 | 95.9 |
平均值 | 41.8 | 47.3 | 43.9 | 60.3 | 46.0 | 92.4 | 53.9 | 82.2 | 51.1 | 92.9 | 66.9 | 90.2 | 53.8 | 93.3 | 75.5 | 90.9 |
检测方法 | Tech-pgp数据集上的异化率 | |||||||||||||||
5%预算 | 10%预算 | 15%预算 | 20%预算 | |||||||||||||
MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | |
Lou | 4.9 | 10.2 | 6.2 | 13.6 | 6.6 | 17.4 | 7.4 | 26.8 | 6.3 | 38.5 | 7.0 | 50.7 | 7.5 | 92.3 | 8.3 | 76.6 |
Lei | 2.6 | 14.7 | 4.2 | 16.2 | 2.9 | 15.5 | 4.3 | 32.0 | 4.8 | 54.3 | 7.7 | 68.2 | 4.9 | 92.3 | 8.9 | 85.5 |
Inf | 12.3 | 54.7 | 2.8 | 29.2 | 12.3 | 17.0 | 5.7 | 36.8 | 48.1 | 27.4 | 7.5 | 71.7 | 56.6 | 27.4 | 47.2 | 71.7 |
Lab | 1.9 | 36.8 | 17.0 | 31.1 | 17.0 | 44.3 | 13.2 | 53.8 | 12.3 | 80.2 | 46.2 | 85.8 | 12.3 | 99.1 | 50.0 | 79.2 |
Walk | 36.8 | 3.8 | 16.0 | 32.1 | 20.8 | 18.9 | 20.8 | 35.8 | 42.5 | 29.2 | 40.6 | 66.0 | 43.4 | 97.2 | 49.1 | 68.9 |
Fast | 2.8 | 17.9 | 2.8 | 17.0 | 15.1 | 52.8 | 18.9 | 42.5 | 13.2 | 25.5 | 17.9 | 48.1 | 13.2 | 88.7 | 41.5 | 50.0 |
平均值 | 10.2 | 23.0 | 8.2 | 23.2 | 12.4 | 27.6 | 11.7 | 37.9 | 21.2 | 42.5 | 21.2 | 65.1 | 23 | 82.8 | 34.1 | 72.0 |
检测方法 | Oregon-1数据集上的异化率 | |||||||||||||||
5%预算 | 10%预算 | 15%预算 | 20%预算 | |||||||||||||
MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | |
Lou | 17.0 | 19.3 | 17.7 | 26.8 | 23.2 | 28.3 | 24.3 | 45.8 | 27.8 | 33.0 | 28.9 | 52.2 | 34.2 | 41.3 | 33.4 | 57.4 |
Lei | 13.2 | 15.3 | 15.1 | 28.7 | 24.9 | 34.0 | 24.5 | 44.7 | 29.8 | 36.6 | 30.4 | 47.4 | 35.3 | 39.4 | 35.5 | 58.6 |
Inf | 12.3 | 15.1 | 17.0 | 20.8 | 55.7 | 12.3 | 55.7 | 54.7 | 84.0 | 14.2 | 55.7 | 55.7 | 84.0 | 17.0 | 86.8 | 54.7 |
Lab | 13.2 | 12.3 | 12.3 | 25.5 | 19.8 | 19.8 | 19.8 | 37.7 | 27.4 | 31.1 | 27.4 | 44.3 | 50.0 | 37.7 | 47.2 | 49.1 |
Walk | 11.3 | 56.6 | 13.2 | 16.0 | 17.0 | 29.2 | 21.7 | 31.1 | 22.6 | 42.5 | 31.1 | 69.8 | 28.3 | 41.5 | 29.2 | 55.7 |
Fast | 48.1 | 25.5 | 18.9 | 56.6 | 21.7 | 52.8 | 26.4 | 51.9 | 22.6 | 55.7 | 50.0 | 59.4 | 37.7 | 56.6 | 51.9 | 62.3 |
平均值 | 19.2 | 24.0 | 15.7 | 29.1 | 27.0 | 29.4 | 28.7 | 44.3 | 35.7 | 35.5 | 37.2 | 54.8 | 44.9 | 38.9 | 47.3 | 56.3 |
Tab. 3 Alienation rates of 1% nodes (small-scale multi-target node hiding)
检测方法 | Email-univ数据集上的异化率 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5%预算 | 10%预算 | 15%预算 | 20%预算 | |||||||||||||
MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | |
Lou | 33.6 | 84.5 | 38.2 | 84.5 | 42.7 | 94.5 | 53.6 | 100.0 | 46.4 | 98.2 | 74.5 | 99.1 | 61.8 | 99.1 | 93.6 | 100.0 |
Lei | 43.6 | 92.7 | 20.0 | 81.8 | 21.8 | 100.0 | 40.0 | 100.0 | 56.4 | 100.0 | 63.6 | 100.0 | 45.5 | 100.0 | 100.0 | 100.0 |
Inf | 18.2 | 90.9 | 45.5 | 100.0 | 36.4 | 100.0 | 72.7 | 100.0 | 36.4 | 100.0 | 81.8 | 100.0 | 54.5 | 100.0 | 90.9 | 100.0 |
Lab | 36.4 | 27.3 | 36.4 | 36.4 | 36.4 | 100.0 | 36.4 | 36.4 | 36.4 | 100.0 | 36.4 | 54.5 | 36.4 | 36.4 | 36.4 | 36.4 |
Walk | 0.0 | 45.5 | 0.0 | 63.6 | 36.4 | 36.4 | 54.5 | 100.0 | 36.4 | 45.5 | 36.4 | 100.0 | 100.0 | 45.5 | 36.4 | 100.0 |
Fast | 27.3 | 72.7 | 72.7 | 72.7 | 63.6 | 90.9 | 63.6 | 90.9 | 72.7 | 90.9 | 72.7 | 100.0 | 54.5 | 90.9 | 72.7 | 90.9 |
平均值 | 26.5 | 68.9 | 35.5 | 73.2 | 39.5 | 87.0 | 53.5 | 87.9 | 47.4 | 89.1 | 60.9 | 92.3 | 58.8 | 78.6 | 71.7 | 87.9 |
检测方法 | Power数据集上的异化率 | |||||||||||||||
5%预算 | 10%预算 | 15%预算 | 20%预算 | |||||||||||||
MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | |
Lou | 22.9 | 34.7 | 19.4 | 39.0 | 24.7 | 96.3 | 36.3 | 78.4 | 31.0 | 99.2 | 49.0 | 98.4 | 32.0 | 98.4 | 68.6 | 98.4 |
Lei | 21.8 | 34.7 | 19.4 | 37.1 | 28.8 | 94.7 | 25.7 | 82.0 | 34.9 | 97.1 | 50.6 | 96.1 | 33.5 | 100.0 | 64.3 | 98.0 |
Inf | 95.9 | 12.2 | 85.7 | 89.8 | 77.6 | 91.8 | 81.6 | 89.8 | 87.8 | 93.9 | 98.0 | 89.8 | 83.7 | 98.0 | 95.9 | 83.7 |
Lab | 40.8 | 91.8 | 53.1 | 79.6 | 51.0 | 100.0 | 79.6 | 91.8 | 51.0 | 100.0 | 87.8 | 93.9 | 57.1 | 95.9 | 98.0 | 95.9 |
Walk | 55.1 | 73.5 | 63.3 | 71.4 | 67.3 | 77.6 | 63.3 | 77.6 | 65.3 | 69.4 | 65.3 | 67.3 | 67.3 | 67.3 | 65.3 | 73.5 |
Fast | 14.3 | 36.7 | 22.4 | 44.9 | 26.5 | 93.9 | 36.7 | 73.5 | 36.7 | 98.0 | 51.0 | 95.9 | 49.0 | 100.0 | 61.2 | 95.9 |
平均值 | 41.8 | 47.3 | 43.9 | 60.3 | 46.0 | 92.4 | 53.9 | 82.2 | 51.1 | 92.9 | 66.9 | 90.2 | 53.8 | 93.3 | 75.5 | 90.9 |
检测方法 | Tech-pgp数据集上的异化率 | |||||||||||||||
5%预算 | 10%预算 | 15%预算 | 20%预算 | |||||||||||||
MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | |
Lou | 4.9 | 10.2 | 6.2 | 13.6 | 6.6 | 17.4 | 7.4 | 26.8 | 6.3 | 38.5 | 7.0 | 50.7 | 7.5 | 92.3 | 8.3 | 76.6 |
Lei | 2.6 | 14.7 | 4.2 | 16.2 | 2.9 | 15.5 | 4.3 | 32.0 | 4.8 | 54.3 | 7.7 | 68.2 | 4.9 | 92.3 | 8.9 | 85.5 |
Inf | 12.3 | 54.7 | 2.8 | 29.2 | 12.3 | 17.0 | 5.7 | 36.8 | 48.1 | 27.4 | 7.5 | 71.7 | 56.6 | 27.4 | 47.2 | 71.7 |
Lab | 1.9 | 36.8 | 17.0 | 31.1 | 17.0 | 44.3 | 13.2 | 53.8 | 12.3 | 80.2 | 46.2 | 85.8 | 12.3 | 99.1 | 50.0 | 79.2 |
Walk | 36.8 | 3.8 | 16.0 | 32.1 | 20.8 | 18.9 | 20.8 | 35.8 | 42.5 | 29.2 | 40.6 | 66.0 | 43.4 | 97.2 | 49.1 | 68.9 |
Fast | 2.8 | 17.9 | 2.8 | 17.0 | 15.1 | 52.8 | 18.9 | 42.5 | 13.2 | 25.5 | 17.9 | 48.1 | 13.2 | 88.7 | 41.5 | 50.0 |
平均值 | 10.2 | 23.0 | 8.2 | 23.2 | 12.4 | 27.6 | 11.7 | 37.9 | 21.2 | 42.5 | 21.2 | 65.1 | 23 | 82.8 | 34.1 | 72.0 |
检测方法 | Oregon-1数据集上的异化率 | |||||||||||||||
5%预算 | 10%预算 | 15%预算 | 20%预算 | |||||||||||||
MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | MBA | nDec | CH-SNMF | BPMNH | |
Lou | 17.0 | 19.3 | 17.7 | 26.8 | 23.2 | 28.3 | 24.3 | 45.8 | 27.8 | 33.0 | 28.9 | 52.2 | 34.2 | 41.3 | 33.4 | 57.4 |
Lei | 13.2 | 15.3 | 15.1 | 28.7 | 24.9 | 34.0 | 24.5 | 44.7 | 29.8 | 36.6 | 30.4 | 47.4 | 35.3 | 39.4 | 35.5 | 58.6 |
Inf | 12.3 | 15.1 | 17.0 | 20.8 | 55.7 | 12.3 | 55.7 | 54.7 | 84.0 | 14.2 | 55.7 | 55.7 | 84.0 | 17.0 | 86.8 | 54.7 |
Lab | 13.2 | 12.3 | 12.3 | 25.5 | 19.8 | 19.8 | 19.8 | 37.7 | 27.4 | 31.1 | 27.4 | 44.3 | 50.0 | 37.7 | 47.2 | 49.1 |
Walk | 11.3 | 56.6 | 13.2 | 16.0 | 17.0 | 29.2 | 21.7 | 31.1 | 22.6 | 42.5 | 31.1 | 69.8 | 28.3 | 41.5 | 29.2 | 55.7 |
Fast | 48.1 | 25.5 | 18.9 | 56.6 | 21.7 | 52.8 | 26.4 | 51.9 | 22.6 | 55.7 | 50.0 | 59.4 | 37.7 | 56.6 | 51.9 | 62.3 |
平均值 | 19.2 | 24.0 | 15.7 | 29.1 | 27.0 | 29.4 | 28.7 | 44.3 | 35.7 | 35.5 | 37.2 | 54.8 | 44.9 | 38.9 | 47.3 | 56.3 |
[1] | GIRVAN M, NEWMAN M E J. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12): 7821-7826. |
[2] | ALBERT R, BARABÁSI A L. Statistical mechanics of complex networks[J]. Reviews of Modern Physics, 2002, 74(1): 47-97. |
[3] | NEWMAN M E J. The structure and function of complex networks[J]. SIAM Review, 2003, 45(2): 167-256. |
[4] | OUKEMENI S, RIFÀ-POUS H, PUIG J M M. Privacy analysis on microblogging online social networks: a survey[J]. ACM Computing Surveys, 2020, 52(3): No.60. |
[5] | NAGARAJA S. The impact of unlinkability on adversarial community detection: effects and countermeasures[C]// Proceedings of the 2010 International Symposium on Privacy Enhancing Technologies, LNCS 6205. Berlin: Springer, 2010: 253-272. |
[6] | CHEN J, CHEN L, CHEN Y, et al. GA-based Q-Attack on community detection[J]. IEEE Transactions on Computational Social Systems, 2019, 6(3): 491-503. |
[7] | WANIEK M, MICHALAK T P, WOOLDRIDGE M J, et al. Hiding individuals and communities in a social network[J]. Nature Human Behaviour, 2018, 2(2): 139-147. |
[8] | MITTAL S, SENGUPTA D, CHAKRABORTY T. Hide and seek: outwitting community detection algorithms[J]. IEEE Transactions on Computational Social Systems, 2021, 8(4): 799-808. |
[9] | 刘栋,刘侠,贾若雪,等. 基于随机块模型的社区隐藏统一框架[J]. 计算机研究与发展, 2024, 61(7):1850-1862. |
LIU D, LIU X, JIA R X, et al. A unified framework for community hiding based on stochastic block model[J]. Journal of Computer Research and Development, 2024, 61(7): 1850-1862. | |
[10] | FIONDA V, PIRRÒ G. Community deception or: how to stop fearing community detection algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(4): 660-673. |
[11] | LIU D, CHANG Z, YANG G, et al. Hiding ourselves from community detection through genetic algorithms[J]. Information Sciences, 2022, 614: 123-137. |
[12] | McAULEY J, LESKOVEC J. Learning to discover social circles in ego networks[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems — Volume 1. Red Hook: Curran Associates Inc., 2012: 539-547. |
[13] | AHN Y Y, BAGROW J P, LEHMANN S. Link communities reveal multiscale complexity in networks[J]. Nature, 2010, 466(7307): 761-764. |
[14] | YANG L, CAO X, HE D, et al. Modularity-based community detection with deep learning[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2016: 2252-2258. |
[15] | STREICH A P, FRANK M, BASIN D, et al. Multi-assignment clustering for Boolean data[C]// Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 969-976. |
[16] | SØRENSEN M, SIDIROPOULOS N D, SWAMI A. Overlapping community detection via semi-binary matrix factorization: identifiability and algorithms[J]. IEEE Transactions on Signal Processing, 2022, 70: 4321-4336. |
[17] | BALASUBRAMANYAN R, COHEN W W. Block-LDA: jointly modeling entity-annotated text and entity-entity links[C]// Proceedings of the 2011 SIAM International Conference on Data Mining. Philadelphia, PA: SIAM, 2011: 450-461. |
[18] | COSCIA M, ROSSETTI G, GIANNOTTI F, et al. DEMON: a local-first discovery method for overlapping communities[C]// Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2012: 615-623. |
[19] | HUANG W, LIU Y, CHEN Y. Mixed membership stochastic block models for heterogeneous networks[J]. Bayesian Analysis, 2020, 15(3): 711-736. |
[20] | ZHANG A, ZHU J, ZHANG B. Sparse relational topic models for document networks[C]// Proceedings of the 2013 European Conference on Machine Learning and Knowledge Discovery in Databases, LNCS 8188. Berlin: Springer, 2013: 670-685. |
[21] | NEWMAN M E J. Modularity and community structure in networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(23): 8577-8582. |
[22] | KHAN B S, NIAZI M A. Network community detection: a review and visual survey[EB/OL]. [2024-04-13].. |
[23] | 王瀚橙,戴海鹏,陈志鹏,等. 基于MapReduce的大规模网络社区发现算法[J]. 计算机科学, 2024, 51(4): 11-18. |
WANG H C, DAI H P, CHEN Z P, et al. Large-scale network community detection algorithm based on MapReduce[J]. Computer Science, 2024, 51(4): 11-18. | |
[24] | YANG G, ZHENG W, CHE C, et al. Graph-based label propagation algorithm for community detection[J]. International Journal of Machine Learning and Cybernetics, 2020, 11(6): 1319-1329. |
[25] | FAN L, SONG K, LIU D. A noise reduction method for semi-supervised community detection based on harmonic function[J]. International Journal of Modern Physics B, 2018, 32(14): No.1850166. |
[26] | 赵兴旺,薛晋芳. 基于二部图表示的属性网络社区发现算法[J]. 计算机科学, 2023, 50(11): 107-113. |
ZHAO X W, XUE J F. Community discovery algorithm for attributed networks based on bipartite graph representation[J]. Computer Science, 2023, 50(11): 107-113. | |
[27] | XU Z, KE Y, WANG Y, et al. A model-based approach to attributed graph clustering[C]// Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2012: 505-516. |
[28] | PALLA G, DERÉNYI I, FARKAS I, et al. Uncovering the overlapping community structure of complex networks in nature and society[J]. Nature, 2005, 435(7043): 814-818. |
[29] | MEENA J, DEVI V S. Overlapping community detection in social network using disjoint community detection[C]// Proceedings of the 2015 IEEE Symposium Series on Computational Intelligence. Piscataway: IEEE, 2015: 764-771. |
[30] | CHEN X, JIANG Z, LI H, et al. Community hiding by link perturbation in social networks[J]. IEEE Transactions on Computational Social Systems, 2021, 8(3): 704-715. |
[31] | LIU Y, LIU J, ZHANG Z, et al. REM: from structural entropy to community structure deception[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 12938-12948. |
[32] | FIONDA V, MADI S A, PIRRÒ G. Community deception: from undirected to directed networks[J]. Social Network Analysis and Mining, 2022, 12: No.74. |
[33] | FIONDA V, PIRRÒ G. Community deception in weighted networks[C]// Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. New York: ACM, 2022: 278-282. |
[34] | NALLUSAMY K, EASWARAKUMAR K S. PERMDEC: community deception in weighted networks using permanence[J]. Computing, 2024, 106(2): 353-370. |
[35] | YANG G, WANG Y, CHANG Z, et al. Overlapping community hiding method based on multi-level neighborhood information[J]. Symmetry, 2022, 14(11): No.2328. |
[36] | LIU D, JIA R, LIU X, et al. A unified framework of community hiding using symmetric nonnegative matrix factorization[J]. Information Sciences, 2024, 663: No.120235. |
[37] | PIRRÒ G. Community deception from a node-centric perspective[J]. IEEE Transactions on Network Science and Engineering, 2024, 11(1): 969-981. |
[38] | CHAKRABORTY T, SRINIVASAN S, GANGULY N, et al. On the permanence of vertices in network communities[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 1396-1405. |
[39] | ZACHARY W W. An information flow model for conflict and fission in small groups[J]. Journal of Anthropological Research, 1977, 33(4): 452-473. |
[40] | LUSSEAU D, SCHNEIDER K, BOISSEAU O J, et al. The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations[J]. Behavioral Ecology and Sociobiology, 2003, 54(4): 396-405. |
[41] | ROSSI R A, AHMED N K. The network data repository with interactive graph analytics and visualization[C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2015: 4292-4293. |
[42] | BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008(10): No.P10008. |
[43] | ROSVALL M, BERGSTROM C T. Maps of random walks on complex networks reveal community structure[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(4): 1118-1123. |
[44] | HOSSEINI R, REZVANIAN A. AntLP: ant-based label propagation algorithm for community detection in social networks[J]. CAAI Transactions on Intelligence Technology, 2020, 5(1): 34-41. |
[45] | PONS P, LATAPY M. Computing communities in large networks using random walks[C]// Proceedings of the 2005 International Symposium on Computer and Information Sciences, LNCS 3733. Berlin: Springer, 2005: 284-293. |
[1] | Bohan ZHANG, Le LYU, Junchang JING, Dong LIU. Genetic algorithm-based community hiding method in attribute networks [J]. Journal of Computer Applications, 2025, 45(9): 2817-2826. |
[2] | Linbo HU, Zhiwei NI, Jiale CHENG, Wentao LIU, Xuhui ZHU. Collaborative crowdsourcing task allocation method fusing community detection [J]. Journal of Computer Applications, 2025, 45(2): 534-545. |
[3] | Xinrui LIN, Xiaofei WANG, Yan ZHU. Academic anomaly citation group detection based on local extended community detection [J]. Journal of Computer Applications, 2024, 44(6): 1855-1861. |
[4] | Zhongyu WANG, Xiaodong QIAN. Optimization of edge connection rules for supply chain network based on improved expectation maximization algorithm [J]. Journal of Computer Applications, 2024, 44(11): 3386-3395. |
[5] | Jie HUANG, Ruizi WU, Junli LI. Efficient adaptive robustness optimization algorithm for complex networks [J]. Journal of Computer Applications, 2024, 44(11): 3530-3539. |
[6] | Shiliang LIU, Yi WANG, Yinglong MA. Non-overlapping community detection with imbalanced community sizes [J]. Journal of Computer Applications, 2024, 44(11): 3396-3402. |
[7] | Lin ZHOU, Yuzhi XIAO, Peng LIU, Youpeng QIN. Community mining algorithm based on multi-relationship of nodes and its application [J]. Journal of Computer Applications, 2023, 43(5): 1489-1496. |
[8] | Peng LI, Shilin WANG, Guangwu CHEN, Guanghui YAN. Key node mining in complex network based on improved local structural entropy [J]. Journal of Computer Applications, 2023, 43(4): 1109-1114. |
[9] | Xiangxi WEN, Yating PENG, Kexin BI, Yuming HENG, Minggong WU. Situation prediction of flight conflict network based on online fuzzy least squares support vector machine with optimal training set [J]. Journal of Computer Applications, 2023, 43(11): 3632-3640. |
[10] | Xiangyu LUO, Ke YAN, Yan LU, Tian WANG, Gang XIN. Nonuniform time slicing method based on prediction of community variance [J]. Journal of Computer Applications, 2023, 43(11): 3457-3463. |
[11] | LI Zhanli, LI Ying, LUO Xiangyu, LUO Yingxiao. Local community detection algorithm based on Monte-Carlo iterative solving strategy [J]. Journal of Computer Applications, 2023, 43(1): 104-110. |
[12] | Yuyu MENG, Jing GUO. Link prediction algorithm based on information entropy improved PCA model [J]. Journal of Computer Applications, 2022, 42(9): 2823-2829. |
[13] | Zhigang HAO, Li QIN. Method for discovering important nodes in food safety standard reference network based on multi-attribute comprehensive evaluation [J]. Journal of Computer Applications, 2022, 42(4): 1178-1185. |
[14] | Jun HU, Zhengkang XU, Li LIU, Fujin ZHONG. Network embedding method based on multi-granularity community information [J]. Journal of Computer Applications, 2022, 42(3): 663-670. |
[15] | Guangfu CHEN, Haibo WANG, Yanping LIAN. Link prediction in directed network based on high-order self-included collaborative filtering [J]. Journal of Computer Applications, 2022, 42(10): 3060-3068. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||